精英家教网 > 高中数学 > 题目详情
18.如图所示,四边形OABC是边长为1的正方形,$\overrightarrow{OA}$=e1,$\overrightarrow{OC}$=e2,D、E分别为AB、BC中点.
求:①用e1、e2表示$\overrightarrow{OD}$,$\overrightarrow{OE}$;
②计算$\overrightarrow{OD}$•$\overrightarrow{OE}$;
③∠DOE=θ,求cosθ

分析 ①运用向量的三角形法则,结合正方形的性质,即可得到所求向量;
②运用向量的数量积的性质,向量垂直的条件:数量积为0,向量的平方即为模的平方,计算即可得到所求;
③分别求得向量$\overrightarrow{OD}$,$\overrightarrow{OE}$的模,运用向量的夹角公式,计算整理即可得到所求值.

解答 解:①$\overrightarrow{OD}$=$\overrightarrow{OA}$+$\overrightarrow{AD}$=$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{AB}$=$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{OC}$=$\overrightarrow{{e}_{1}}$+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$;
$\overrightarrow{OE}$=$\overrightarrow{OC}$+$\overrightarrow{CE}$=$\overrightarrow{OC}$+$\frac{1}{2}$$\overrightarrow{CB}$=$\overrightarrow{OC}$+$\frac{1}{2}$$\overrightarrow{OA}$=$\overrightarrow{{e}_{2}}$+$\frac{1}{2}$$\overrightarrow{{e}_{1}}$;
②$\overrightarrow{OD}$•$\overrightarrow{OE}$=($\overrightarrow{{e}_{1}}$+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$)•($\overrightarrow{{e}_{2}}$+$\frac{1}{2}$$\overrightarrow{{e}_{1}}$)=$\frac{1}{2}$$\overrightarrow{{e}_{1}}$2+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$2+$\frac{5}{4}$$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$
=$\frac{1}{2}$+$\frac{1}{2}$+0=1;
③|$\overrightarrow{OD}$|=$\sqrt{(\overrightarrow{{e}_{1}}+\frac{1}{2}\overrightarrow{{e}_{2}})^{2}}$=$\sqrt{{\overrightarrow{{e}_{1}}}^{2}+\frac{1}{4}{\overrightarrow{{e}_{2}}}^{2}+\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}}$=$\sqrt{1+\frac{1}{4}}$=$\frac{\sqrt{5}}{2}$,
|$\overrightarrow{OE}$|=$\sqrt{(\overrightarrow{{e}_{2}}+\frac{1}{2}\overrightarrow{{e}_{1}})^{2}}$=$\sqrt{{\overrightarrow{{e}_{2}}}^{2}+\frac{1}{4}{\overrightarrow{{e}_{1}}}^{2}+\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}}$=$\sqrt{1+\frac{1}{4}}$=$\frac{\sqrt{5}}{2}$,
即有cosθ=$\frac{\overrightarrow{OD}•\overrightarrow{OE}}{|\overrightarrow{OD}|•|\overrightarrow{OE}|}$=$\frac{1}{\frac{\sqrt{5}}{2}×\frac{\sqrt{5}}{2}}$=$\frac{4}{5}$.

点评 本题考查向量的数量积的坐标表示和向量夹角的求法,考查向量的加减运算,注意运用三角形法则,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知实数a,b满足:a2+b2≠0,过点M(-1,0)作直线ax+by+2b-a=0的垂线,垂足为N,点P(1,1),则|PN|的最大值为$\sqrt{5}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|1≤x≤5},集合B={X|2m≤2x≤8.2m}
(1)若B⊆A,求实数m的取值范围
(2)若A∪(CRB)=R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=cos(sinx)是偶函数(填“奇”“偶”或“非奇非偶”),最小正周期为π.值域为[cos1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点A(3,4,4),B(-2,-1,5),C(4,5,0),若点D在线段AC上,且△ABD的面积是△ABC的面积的$\frac{1}{3}$,求线段BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若a≥$\frac{x}{x-1}$对于x∈[2,3]恒成立,写出实数a的取值范围[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=sin(2x+5m)(m>0)的图象关于y轴对称,则m的最小值为$\frac{π}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2x-2+sin(π-x).
(I)求f($\frac{π}{6}$)的值;
(II)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,BD:DC=2:1,AE:EC=1:3,求OB:OE.

查看答案和解析>>

同步练习册答案