精英家教网 > 高中数学 > 题目详情
19.如图是一个算法的流程图,则最后输出的S是-9.

分析 模拟执行程序框图,依次写出每次循环得到的S,n的值,当n=7时不满足条件n≤6,退出循环,输出S的值为-9.

解答 解:模拟执行程序框图,可得
S=0,n=1
满足条件n≤6,S=-1,n=3
满足条件n≤6,S=-4,n=5
满足条件n≤6,S=-9,n=7
不满足条件n≤6,退出循环,输出S的值为-9.
故答案为:-9.

点评 本题主要考查了循环结构的程序框图,正确写出每次循环得到的S,n的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.解不等式:$\frac{|5x-3|-|4x+1|}{{x}^{2}+x+1}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直角梯形ABCD,满足AB⊥AD,CD⊥AD,AB=2AD=2CD=2现将其沿AC折叠成三棱锥D-ABC,当三棱锥D-ABC体积取最大值时其外接球的体积为(  )
A.$\frac{{\sqrt{3}π}}{2}$B.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.根据抛物线的光学性质,在焦点处的点光源发出的光经抛物面反射后,将平行于对称轴射出,如图,抛物线C:y2=2px(p>0)的焦点为F,设过抛物线C上的点P的切线为l,现过原点作l的平行线交直线PF于M,则|MF|等于(  )
A.pB.$\frac{p}{2}$C.$\frac{3}{8}p$D.$\frac{{\sqrt{2}}}{2}p$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.阅读如图程序框图,该程序输出的结果是1683.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若x<0,则x+$\frac{4}{x}$的最大值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点A作斜率为2的直线,与椭圆的另一个交点为B,与y轴的交点为C,已知$\overrightarrow{AB}=\frac{6}{13}\overrightarrow{BC}$.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得PM⊥QM,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.运行如图所示的流程图,如果输入b=2,经过四次循环后输出的a=9,则输入正数a的值可能为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若过抛物线x2=4y的准线上一动点P作此抛物线的两条切线,切点分别为A(x1,y1)、B(x2,y2);点O为坐标原点.则以下命题:
(1)直线AB过定点;
(2)∠AOB为钝角;
(3)∠APB可取60°;
(4)若△ABP的面积为$\frac{125}{16}$,则点P坐标为($\frac{3}{2}$,-1)或(-$\frac{3}{2}$,-1).
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案