精英家教网 > 高中数学 > 题目详情
如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC
及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.
(1)求证:AC⊥DE;

(2)求二面角A-DE-C的余弦值。
(1)证明过程详见试题解析;(2)二面角的余弦值为.

试题分析:(1)由已知条件证出互相垂直,以为坐标系原点建立空间坐标系,写出各点坐标,求出即证得AC⊥DE;(2)先求出平面DCE的法向量,平面的法向量,两法向量的夹角即为所求.
∵平面平面,且
平面,∴
,在Rt
,∴中点
分别以AD,AE,AC为x轴,y轴,z轴建立空间直角坐标系

(1)

(2)设平面DCE的法向量为
,且

平面,∴平面的法向量为.
∴二面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,平面⊥平面是线段上一点,
(1)证明:⊥平面
(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,平面平面ABCD,四边形ACFE是矩形,AE=a.
(1)求证:平面ACFE;
(2)求二面角B—EF—D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下图,在三棱锥中,底面,点为以为直径的圆上任意一动点,且,点的中点,且交于点.
(1)求证:
(2)当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,底面是边长为2的菱形,且,以为底面分别作相同的正三棱锥,且.

(1)求证:平面
(2)求平面与平面所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.

(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,O是AC的中点,平面.

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记=λ.当∠APC为钝角时,λ的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

外接圆的圆心,,且,则  .

查看答案和解析>>

同步练习册答案