精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义域为的奇函数,当.

(Ⅰ)求出函数上的解析式;

(Ⅱ)在答题卷上画出函数的图象,并根据图象写出的单调区间;

(Ⅲ)若关于的方程有三个不同的解,求的取值范围

【答案】(Ⅰ);(Ⅱ)单调增区间为

单调减区间为(Ⅲ) .

【解析】试题分析; (Ⅰ)①由于函数是定义域为的奇函数,则

②当时, ,因为是奇函数,所以可得当 的解析式,从而得到上的解析式
(Ⅱ)根据(Ⅰ)得到的解析式可画出函数的图象,进而得到的单调区间

(Ⅲ)由(1)可得 有极大值1,极小值-1,进而可构造关于 的不等式,解不等式可得答案.

试题分析;(Ⅰ)①由于函数是定义域为的奇函数,则

②当时, ,因为是奇函数,所以

所以.

综上:

(Ⅱ)图象如图所示.(图像给2分)

单调增区间:

单调减区间:

(Ⅲ)∵方程有三个不同的解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求的单调区间;

(II)若对任意的,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应市政府“绿色出行”的号召,王老师每个工作日上下班由自驾车改为选择乘坐地铁或骑共享单车这两种方式中的一种出行.根据王老师从2017年3月到2017年5月的出行情况统计可知,王老师每次出行乘坐地铁的概率是0.4,骑共享单车的概率是0.6.乘坐地铁单程所需的费用是3元,骑共享单车单程所需的费用是1元.记王老师在一个工作日内上下班所花费的总交通费用为X元,假设王老师上下班选择出行方式是相互独立的.

(I)求X的分布列和数学期望

(II)已知王老师在2017年6月的所有工作日(按22个工作日计)中共花费交通费用110元,请判断王老师6月份的出行规律是否发生明显变化,并依据以下原则说明理由.

原则:设表示王老师某月每个工作日出行的平均费用,若,则有95%的把握认为王老师该月的出行规律与前几个月的出行规律相比有明显变化.(注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设ABC的顶点分别为,圆M是ABC的外接圆,直线的方程是

(1)求圆M的方程;

(2)证明:直线与圆M相交;

(3)若直线被圆M截得的弦长为3,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据

x

2

4

5

6

8

y

30

40

60

50

70

1)画出散点图,并判断广告费与销售额是否具有相关关系;

2)根据表中提供的数据,用最小二乘法求出yx的回归方程

3)预测销售额为115万元时,大约需要多少万元广告费。

参考公式:回归方程为其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分12分为了解某校学生暑期参加体育锻炼的情况对某班M名学生暑期参加体育锻炼的次数进行了统计得到如下的频率分布表与直方图:

组别

锻炼次数

频数

频率

1

2

0.04

2

11

0.22

3

16

4

15

0.30

5

6

2

0.04

[

合计

1.00

1求频率分布表中及频率分布直方图中的值;

2求参加锻炼次数的众数直接写出答案不要求计算过程

3若参加锻炼次数不少于18次为及格估计这次体育锻炼的及格率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,ABC的三个内角为A,B,C,m=sin B+sin C,0,n=0,sin A

|m|2-|n|2=sin Bsin C

1求角A的大小

2求sin B+sin C的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx- (1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.

(1)求炮的最大射程;

(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

同步练习册答案