【题目】如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2,AB=DP=,E为CD的中点,点F在线段PB上.试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等.
【答案】当时,直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等
【解析】
由已知可证PA⊥底面ABCD,由余弦定理求出,进而有,以A为坐标原点,以DA,AC,AP所在直线为x轴,y轴,z轴,建立空间直角坐标系Axyz,求出坐标,设=λ(λ∈[0,1]),求出平面PDC的法向量坐标,而平面ABCD的一个法向量为=(0,0,1),按照空间向量的线面角公式,即可求解.
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,
PA⊥AD,PA平面PAD,∴PA⊥底面ABCD. 以A为坐标原点,
在中,,
以DA,AC,AP所在直线为x轴,y轴,z轴,
建立如图所示的空间直角坐标系Axyz,
则A(0,0,0),D(-2,0,0),C(0,2,0),
B(2,2,0),E(-1,1,0),P(0,0,2),
∴=(0,2,-2),=(-2,0,-2),
=(2,2,-2).设=λ(λ∈[0,1]),
则=(2λ,2λ,-2λ),F(2λ,2λ,-2λ+2),
∴=(2λ+1,2λ-1,-2λ+2),
平面ABCD的一个法向量为=(0,0,1).
设平面PDC的法向量为=(x,y,z),
则∴,令x=1,得=(1,-1,-1).
∵直线EF与平面PDC所成的角和此直线与平面ABCD所成的角相等,
,
即,∴2-2λ=,解得,
∴当时,直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等.
科目:高中数学 来源: 题型:
【题目】近年来,昆明加大了特色农业建设,其中花卉产业是重要组成部分.昆明斗南毗邻滇池东岸,是著名的花都,有“全国10支鲜花7支产自斗南”之说,享有“金斗南”的美誉.为进一步了解鲜花品种的销售情况,现随机抽取甲、乙两户斗南花农,对其连续5日的玫瑰花日销售情况进行跟踪调查,将日销售量作为样本绘制成茎叶图如下,单位:扎(20支/扎).
(1)求甲、乙两户花农连续5日的日均销售量,并比较两户花农连续5日销售量的稳定性;
(2)从两户花农连续5日的销售量中各随机抽取一个,求甲的销售量比乙的销售量高的概率·
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校y(百个) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱.
(已知:,则认为y与x线性相关性很强;,则认为y与x线性相关性一般;,则认为y与x线性相关性较):
(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).
参考公式和数据:,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中《方田》章有弧田面积计算问题,计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积(弦乘矢+矢乘矢),弧田是由圆弧(简称为弧田的弧)和以圆弧的端点为端点的线段(简称 (弧田的弦)围成的平面图形,公式中“弦”指的是弧田的弦长,“矢”等于弧田的弧所在圆的半径与圆心到弧田的弦的距离之差.现有一弧田,其弦长等于,其弧所在圆为圆,若用上述弧田面积计算公式计算得该弧田的面积为,则( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.
(1)求异面直线A1B与AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是一块平行四边形园地,经测量,.拟过线段上一点 设计一条直路(点在四边形的边上,不计直路的宽度),将该园地分为面积之比为的左,右两部分分别种植不同花卉.设(单位:m).
(1)当点与点重合时,试确定点的位置;
(2)求关于的函数关系式;
(3)试确定点的位置,使直路的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.
(1)求曲线的直角坐标方程;
(2)设曲线与直线交于点,点的坐标为(3,1),求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线和圆,抛物线的焦点为.
(1)求的圆心到的准线的距离;
(2)若点在抛物线上,且满足, 过点作圆的两条切线,记切点为,求四边形的面积的取值范围;
(3)如图,若直线与抛物线和圆依次交于四点,证明:的充要条件是“直线的方程为”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com