精英家教网 > 高中数学 > 题目详情
12.假设关于某设备使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知y对x呈线性相关关系.
试求:(1)线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的回归系数$\stackrel{∧}{a}$,$\stackrel{∧}{b}$;
(2)估计使用年限为10时,维修费用是多少?
(参考公式)$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\stackrel{∧}{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$,其中$\overline{x}=\frac{1}{n}\sum_{i=1}^n{x_i}$,$\overline{y}=\frac{1}{n}\sum_{i=1}^n{y_i}$.

分析 (1)根据所给的数据,做出变量x,y的平均数,根据最小二乘法做出线性回归方程的系数$\hat{b}$,在根据样本中心点一定在线性回归直线上,求出$\hat{a}$的值.
(2)根据第一问做出的$\hat{a}$,$\hat{b}$的值,写出线性回归方程,当自变量为10时,代入线性回归方程,求出维修费用,这是一个预报值.

解答 解析:(1)制表如下:

i12345合计
xi2345620
yi2.23.85.56.57.025
xiyi4.411.422.032.542.0112.3
?${x_i}^2$4916253690
?$\overline{x}=4$;?$\overline{y}=5$;?$\sum_{i=1}^n{{x_i}^2}=90$;$\sum_{i=1}^n{{x_i}{y_i}}=112.3$
于是$\hat b=\frac{112.3-5×4×5}{{90-5×{4^2}}}=1.23$,$\hat a=\hat y-\hat b\overline{x}=5-1.23×4=0.08$.
(2)回归直线方程为$\hat y=1.23x+0.08=12.38$.
当x=10时,$\hat y=12.38$,即估计使用10年时,维修费用是12.38万元.

点评 本题考查线性回归方程,考查最小二乘法,考查预报值的求法,是一个新课标中出现的新知识点,已经在广东的高考卷中出现过类似的题目

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知f(α)=$\frac{sin(2π-α)cos(\frac{π}{2}+α)}{cos(-\frac{π}{2}+α)tan(π+α)}$,则f($\frac{π}{3}$)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=log2(ax2-x-2a)在区间(-∞,-1)上是单调减函数,则实数a的取值范围是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a2x-2ax+1+2(a>0,a≠1)的定义域为x∈[-1,+∞)
(1)若a=2,求y=f(x)的最小值;
(2)当0<a<1时,若至少存在x0∈[-2,-1]使得f(x0)≤3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.方程$\frac{{x}^{2}}{15-k}$+$\frac{{y}^{2}}{k-9}$=1表示焦点在y轴上的椭圆,则实数k的取值范围是(12,15).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后射到直线OB上,再经直线OB反射后射到P点,则光线所经过的路程PM+MN+NP等于(  )
A.$2\sqrt{10}$B.6C.$3\sqrt{3}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线y2=4x,直线l过定点P(2,1),斜率为k,当k为何值时,直线l与抛物线:只有一个公共点;有两个公共点;没有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.正三棱锥的顶点都在同一球面上.若该棱锥的高为3,底面边长为3,则该球的表面积为(  )
A.B.C.16πD.$\frac{32π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=2{cos^2}(x-\frac{π}{4})-\sqrt{3}$cos2x+1,
(1)求函数f(x)的最小正周期及对称轴方程;
(2)若对任意实数x,不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案