ÒÑÖªÊýÁÐ{an}¶ÔÓÚÈÎÒâp£¬q¡ÊN*£¬¶¼ÓÐap+aq=ap+q£¬ÇÒa1=2£®
£¨1£©ÇóanµÄ±í´ïʽ£»
£¨2£©½«ÊýÁÐ{an}ÒÀ´Î°´1Ïî¡¢2Ïî¡¢3Ïî¡¢4ÏîÑ­»·µØ·ÖΪ£¨a1£©£¬£¨a2£¬a3£©£¬£¨a4£¬a5£¬a6£©£¬£¨a7£¬a8£¬a9£¬a10£©£»£¨a11£©£¬£¨a12£¬a13£©£¬£¨a14£¬a15£¬a16£©£¬£¨a17£¬a18£¬a19£¬a20£©£»£¨a21£©£¬¡­£¬·Ö±ð¼ÆËã¸÷¸öÀ¨ºÅÄÚ¸÷ÊýÖ®ºÍ£¬ÉèÓÉÕâЩºÍ°´Ô­À´À¨ºÅµÄÇ°ºó˳Ðò¹¹³ÉµÄÊýÁÐΪ{bn}£¬Çób5+b100µÄÖµ£»
£¨3£©ÉèAnΪÊýÁÐ{
an-1
an
}
µÄÇ°nÏî»ý£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃ²»µÈʽAn
an+1
£¼a-
3
2a
¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓɶÔÓÚÈÎÒâp£¬q¡ÊN*£¬¶¼ÓÐap+aq=ap+q£¬ÇÒa1=2£¬Öªan=2n£®
£¨2£©ÒòΪan=2n£¨n¡ÊN*£©£¬ËùÒÔÊýÁÐ{an}ÒÀ´Î°´1Ïî¡¢2Ïî¡¢3Ïî¡¢4ÏîÑ­»·£¬Ã¿Ò»´ÎÑ­»·¼ÇΪһ×飮ÓÉÓÚÿһ¸öÑ­»·º¬ÓÐ4¸öÀ¨ºÅ£¬¹Êb100ÊǵÚ25×éÖеÚ4¸öÀ¨ºÅÄÚ¸÷ÊýÖ®ºÍ£®ÓÉ´ËÄÜÇó³öb5+b100µÄÖµ£®
£¨3£©ÒòΪ
an-1
an
=1-
1
an
£¬¹ÊAn=(1-
1
a1
)(1-
1
a2
)••(1-
1
an
)
£¬ËùÒÔAn
an+1
=(1-
1
a1
)(1-
1
a2
)••(1-
1
an
)
2n+1
£®¹ÊAn
an+1
£¼a-
3
2a
¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÓÉ´ËÄÜÇó³öʹµÃËù¸ø²»µÈʽ¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢µÄʵÊýaÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©¡ß¶ÔÓÚÈÎÒâp£¬q¡ÊN*£¬¶¼ÓÐap+aq=ap+q£¬ÇÒa1=2£¬
¡àa2=2a1=4£¬a3=2+4=6£¬a4=2+6=8£¬¡­£¬an=2n£»£¨4·Ö£©
£¨2£©ÒòΪan=2n£¨n¡ÊN*£©£¬
ËùÒÔÊýÁÐ{an}ÒÀ´Î°´1Ïî¡¢2Ïî¡¢3Ïî¡¢4ÏîÑ­»·µØ·ÖΪ
£¨2£©£¬£¨4£¬6£©£¬£¨8£¬10£¬12£©£¬£¨14£¬16£¬18£¬20£©£»
£¨22£©£¬£¨24£¬26£©£¬£¨28£¬30£¬32£©£¬£¨34£¬36£¬38£¬40£©£»
£¨42£©£¬£®Ã¿Ò»´ÎÑ­»·¼ÇΪһ×飮ÓÉÓÚÿһ¸öÑ­»·º¬ÓÐ4¸öÀ¨ºÅ£¬
¹Êb100ÊǵÚ25×éÖеÚ4¸öÀ¨ºÅÄÚ¸÷ÊýÖ®ºÍ£®£¨6·Ö£©
ÓÉ·Ö×é¹æÂÉÖª£¬Óɸ÷×éµÚ4¸öÀ¨ºÅÖÐËùÓеÚ1¸öÊý×é³ÉµÄÊýÁÐÊǵȲîÊýÁУ¬ÇÒ¹«²îΪ20£®
ͬÀí£¬Óɸ÷×éµÚ4¸öÀ¨ºÅÖÐËùÓеÚ2¸öÊý¡¢ËùÓеÚ3¸öÊý¡¢
ËùÓеÚ4¸öÊý·Ö±ð×é³ÉµÄÊýÁÐÒ²¶¼ÊǵȲîÊýÁУ¬ÇÒ¹«²î¾ùΪ20£®£¨8·Ö£©
¹Ê¸÷×éµÚ4¸öÀ¨ºÅÖи÷ÊýÖ®ºÍ¹¹³ÉµÈ²îÊýÁУ¬ÇÒ¹«²îΪ80£®
×¢Òâµ½µÚÒ»×éÖеÚ4¸öÀ¨ºÅÄÚ¸÷ÊýÖ®ºÍÊÇ68£¬£¨6·Ö£©
ËùÒÔb100=68+24¡Á80=1988£®ÓÖb5=22£¬ËùÒÔb5+b100=2010£®£¨10·Ö£©
£¨3£©ÒòΪ
an-1
an
=1-
1
an
£¬¹ÊAn=(1-
1
a1
)(1-
1
a2
)••(1-
1
an
)
£¬
ËùÒÔAn
an+1
=(1-
1
a1
)(1-
1
a2
)••(1-
1
an
)
2n+1
£®
¹ÊAn
an+1
£¼a-
3
2a
¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬
¾ÍÊÇ(1-
1
a1
)(1-
1
a2
)••(1-
1
an
)
2n+1
£¼a-
3
2a

¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£®£¨12·Ö£©
Éèg(n)=(1-
1
a1
)(1-
1
a2
)••(1-
1
an
)
2n+1
£¬
ÔòÖ»Ðè[g(n)]max£¼a-
3
2a
¼´¿É£®
ÓÉÓÚ
g(n+1)
g(n)
=(1-
1
an+1
)•
2n+3
2n+1
=
2n+1
2n+2
2n+3
2n+1
=
4n2+8n+3
4n2+8n+4
£¼1
£¬
ËùÒÔg£¨n+1£©£¼g£¨n£©£¬¹Êg£¨n£©Êǵ¥µ÷µÝ¼õ£¬
ÓÚÊÇ[g(n)]max=g(1)=
3
2
£®£¨14·Ö£©
Áî
3
2
£¼a-
3
2a
£¬¼´
(a-
3
)(2a+
3
)
a
£¾0
£¬
½âµÃ-
3
2
£¼a£¼0
£¬»òa£¾
3
£¬£¨15·Ö£©
×ÛÉÏËùÊö£¬Ê¹µÃËù¸ø²»µÈʽ¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢µÄʵÊýa´æÔÚ£¬
aµÄÈ¡Öµ·¶Î§ÊÇ(-
3
2
£¬0)¡È(
3
£¬+¡Þ)
£®£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬עÒ⹫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}¶ÔÓÚÈÎÒâp£¬q¡ÊN*£¬ÓÐap+aq=ap+q£¬Èôa1=
19
£¬Ôòa36=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}¶ÔÓÚÈÎÒâp£¬q¡ÊN*£¬ÓÐap+aq=ap+q£¬Èôa1=
25
£¬Ôòa100=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÒÔÏÂ4¸öÃüÌ⣬ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
£¨1£©£¨3£©
£¨1£©£¨3£©

£¨1£©µ±aΪÈÎÒâʵÊýʱ£¬Ö±Ïߣ¨a-1£©x-y+2a+1=0ºã¹ý¶¨µãPÔò½¹µãÔÚyÖáÉÏÇÒ¹ýµãPÅ×ÎïÏߵıê×¼·½³ÌÊÇx2=
4
3
y£®
£¨2£©ÈôÖ±Ïßl1£º2kx+£¨k+1£©y+1=0ÓëÖ±Ïßl2£ºx-ky+2=0´¹Ö±£¬ÔòʵÊýk=1£»
£¨3£©ÒÑÖªÊýÁÐ{an}¶ÔÓÚÈÎÒâp£¬q¡ÊN*£¬ÓÐap+aq=ap+q£¬Èôa1=
1
9
£¬Ôòa36=4
£¨4£©¶ÔÓÚÒ»ÇÐʵÊýx£¬Áî[x]´óÓÚx×î´óÕûÊý£¬ÀýÈ磺[3.05]=3£¬[
5
3
]=1£¬Ôòº¯Êýf£¨x£©=[x]³ÆΪ¸ß˹º¯Êý»òÈ¡Õûº¯Êý£¬Èôan=f£¨
n
3
£©£¨n¡ÊN*£©£¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÔòS50=145£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}¶ÔÓÚÈÎÒâµÄp£¬q¡ÊN*£¬ÓÐap+q=ap•aq£®Èôa1=
2
£¬Ôòa18=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}¶ÔÓÚÈÎÒâp£¬q¡ÊN*£¬ÓÐap•aq=ap+q£¬Èôa1=
2
£¬Ôòa10µÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸