¹ýµãP£¨1£¬0£©×÷ÇúÏßC£ºy=xk£¨x¡Ê£¨0£¬+¡Þ£©£¬k¡ÊN*£¬k£¾1£©µÄÇÐÏߣ¬ÇеãΪM1£¬ÉèM1ÔÚxÖáÉϵÄͶӰÊǵãP1£»ÓÖ¹ýµãP1×÷ÇúÏßCµÄÇÐÏߣ¬ÇеãΪM2£¬ÉèM2ÔÚxÖáÉϵÄͶӰÊǵãP2£»¡­£»ÒÀ´ËÏÂÈ¥£¬µÃµ½Ò»ÏµÁеãM1£¬M2£¬¡­Mn£¬¡­£»ÉèËüÃǵĺá×ø±êa1£¬a2£¬¡­£¬
an¡­¹¹³ÉÊýÁÐΪ{an}£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÇóÖ¤£ºan¡Ý1+
n
k-1
£»
£¨¢ó£©µ±k=2ʱ£¬Áîbn=
n
an
£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍSn£®
£¨¢ñ£©¶Ôy=xkÇóµ¼Êý£¬
µÃy¡ä=kxk-1£¬
µãÊÇMn£¨an£¬ank£©µÄÇÐÏß·½³ÌÊÇy-ank=kank-1£¨x-an£©£®¡­£¨2·Ö£©
µ±n=1ʱ£¬ÇÐÏß¹ýµãP£¨1£¬0£©£¬
¼´0-a1k=ka1k-1£¨1-a1£©£¬
µÃa1=
k
k-1
£»
µ±n£¾1ʱ£¬ÇÐÏß¹ýµãPn-1£¨an-1£¬0£©£¬
¼´0-ank=kank-1£¨an-1-an£©£¬
µÃ
an
an-1
=
k
k-1
£®
ËùÒÔÊýÁÐ{an}ÊÇÊ×Ïîa1=
k
k-1
£¬¹«±ÈΪ
k
k-1
µÄµÈ±ÈÊýÁУ¬
ËùÒÔÊýÁÐ{an}µÄͨÏʽΪan=(
k
k-1
)n£¬n¡ÊN*
£®¡­£¨4·Ö£©
£¨ II£©Ó¦ÓöþÏîʽ¶¨Àí£¬µÃan=(
k
k-1
)n=(1+
1
k-1
)n=
C0n
+
C1n
1
k-1
+
C2n
(
1
k-1
)2+¡­+
Cnn
(
1
k-1
)n¡Ý1+
n
k-1
£®¡­£¨8·Ö£©
£¨ III£©µ±k=2ʱ£¬an=2n£¬
ÊýÁÐ{bn}µÄÇ°nÏîºÍSn=
1
2
+
2
22
+
3
23
+¡­+
n
2n
£¬
ͬ³ËÒÔ
1
2
£¬µÃ
1
2
Sn
=
1
22
+
2
23
+
3
24
+¡­+
n
2n+1
£¬
Á½Ê½Ïà¼õ£¬¡­£¨10·Ö£©
µÃ
1
2
Sn
=
1
2
+
1
22
+
1
23
+¡­+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1
£¬
ËùÒÔSn=2-
n+2
2n
£®¡­£¨12·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹ýµãP£¨1£¬0£©×÷ÇúÏßC£ºy=xk£¨x¡Ê£¨0£¬+¡Þ£©£¬k¡ÊN*£¬k£¾1£©µÄÇÐÏߣ¬ÇеãΪM1£¬ÉèM1ÔÚxÖáÉϵÄͶӰÊǵãP1£®ÓÖ¹ýµãP1×÷ÇúÏßCµÄÇÐÏߣ¬ÇеãΪM2£¬ÉèM2ÔÚxÖáÉϵÄͶӰÊǵãP2¡­£®ÒÀ´ËÏÂÈ¥£¬µÃµ½Ò»ÏµÁеãM1£¬M2£¬¡­£¬Mn£¬¡­£¬ÉèËüÃǵĺá×ø±êa1£¬a2£¬¡­£¬an£¬¡­£¬¹¹³ÉÊýÁÐ{an}£®£¨a1¡Ù0£©£®
£¨1£©ÇóÖ¤ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬²¢ÇóÆäͨÏʽ£»
£¨2£©ÇóÖ¤£ºan¡Ý1+
n
k+1
£»
£¨3£©Èôk=2£¬¼Çbn=
n
i=0
(-1)i
a
2
n-i
C
i
2n-i+1
£¬Çób2010£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•½õÖÝһģ£©¹ýµãP£¨1£¬0£©×÷ÇúÏßC£ºy=x2£¨x£¾0£©µÄÇÐÏߣ¬ÇеãΪQ1£¬Ã»Q1ÔÚxÖáÉϵÄͶӰÊÇP1£¬ÓÖ¹ýP1£¬×÷ÇúÏßCµÄÇÐÏߣ¬ÇеãΪQ2£¬ÉèQ2ÔÚxÖáÉϵÄͶӰÊÇP2¡­£¬ÒÀ´ÎÏÂÈ¥£¬µÃµ½Ò»ÏµÁеãQ1Q2£¬¡­Qn£¬ÉèQnµÄºá×ø±êΪan£®
£¨I£©Çóa1µÄÖµ¼°{an}µÄͨÏʽ£»
£¨¢ò£©Áîbn=
an(an-1)(an+1-1)
£¬ÉèÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÄÏͨÈýÄ££©¹ýµãP£¨-1£¬0£©×÷ÇúÏßC£ºy=exµÄÇÐÏߣ¬ÇеãΪT1£¬ÉèT1ÔÚxÖáÉϵÄͶӰÊǵãH1£¬¹ýµãH1ÔÙ×÷ÇúÏßCµÄÇÐÏߣ¬ÇеãΪT2£¬ÉèT2ÔÚxÖáÉϵÄͶӰÊǵãH2£¬¡­£¬ÒÀ´ÎÏÂÈ¥£¬µÃµ½µÚn+1£¨n¡ÊN£©¸öÇеãTn+1£®ÔòµãTn+1µÄ×ø±êΪ
£¨n£¬en£©
£¨n£¬en£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹ýµãP£¨1£¬0£©×÷ÇúÏßC£ºy=x2£¨x¡Ê£¨0£¬+¡Þ£©µÄÇÐÏߣ¬ÇеãΪM1£¬ÉèM1ÔÚxÖáÉϵÄͶӰÊǵãP1£®ÓÖ¹ýµãP1×÷ÇúÏßCµÄÇÐÏߣ¬ÇеãΪM2£¬ÉèM2ÔÚxÖáÉϵÄͶӰÊǵãP2£¬¡­£®ÒÀ´ËÏÂÈ¥£¬µÃµ½Ò»ÏµÁеãM1£¬M2¡­£¬Mn£¬¡­£¬ÉèËüÃǵĺá×ø±êa1£¬a2£¬¡­£¬an£¬¡­£¬¹¹³ÉÊýÁÐΪ{an}£®
£¨1£©ÇóÖ¤ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬²¢ÇóÆäͨÏʽ£»
£¨2£©Áîbn=
nan
£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉعضþÄ££©Èçͼ£¬¹ýµãP£¨1£¬0£©×÷ÇúÏßC£ºy=x2£¨x¡Ê£¨0£¬+¡Þ£©£©µÄÇÐÏߣ¬ÇеãΪQ1£¬ÉèµãQ1ÔÚxÖáÉϵÄͶӰÊǵãP1£»ÓÖ¹ýµãP1×÷ÇúÏßCµÄÇÐÏߣ¬ÇеãΪQ2£¬ÉèQ2ÔÚxÖáÉϵÄͶӰÊÇP2£»¡­£»ÒÀ´ËÏÂÈ¥£¬µÃµ½Ò»ÏµÁеãQ1£¬Q2£¬Q3-Qn£¬ÉèµãQnµÄºá×ø±êΪan£®
£¨1£©ÇóÖ±ÏßPQ1µÄ·½³Ì£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©¼ÇQnµ½Ö±ÏßPnQn+1µÄ¾àÀëΪdn£¬ÇóÖ¤£ºn¡Ý2ʱ£¬
1
d1
+
1
d2
+¡­
1
dn
£¾3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸