(本题12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
解:(Ⅰ)取AC的中点O,连接DO,则DO⊥AC,
∵平面ADC⊥平面ABC,∴DO⊥平面ABC,∴DO⊥BC,
在直角梯形ABCD中,连接CM,可得CM=AD=2,AC=BC=2,
∴AC2+BC2=AB2,∴AC⊥BC,
又∵DO∩AC=O,∴BC⊥平面ACD;
(Ⅱ)取CD的中点N,连接MO, NO, MN,
则MO∥BC,∴MO⊥平面ACD,∴MO⊥CD,
∵AD⊥CD,ON∥AD,∴ON⊥CD,又∵MO∩NO=O,
∴CD⊥平面MON,∴CD⊥MN,∴∠MNO是所求二面角的平面角
在Rt△MON中,MO==,NO==1,
∴MN==,∴cos∠MNO==
【解析】略
科目:高中数学 来源:2011年福建省高一上学期期末考试数学试卷 题型:解答题
(本题12分)
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,点E、F分别为棱AB、PD的中点.
(1)求证:平面PCD;(2)求证:平面PCE⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源:2013届四川省巴中市四县中高二上学期期末考试理科数学 题型:解答题
((本题12分)如图2,在棱长为1的正方体ABCD—A1B1C1D1中,点E、F、G分别是DD1、BD、BB1的中点。
(Ⅰ)求直线EF与直线CG所成角的余弦值;
(Ⅱ)求直线C1C与平面GFC所成角的正弦值;
(Ⅲ)求二面角E—FC—B的余弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com