精英家教网 > 高中数学 > 题目详情

【题目】几位同学在研究函数 时,给出了下面几个结论:

的单调减区间是,单调增区间是

②若,则一定有

③函数的值域为

④若规定,则对任意恒成立.

上述结论中正确的是____

【答案】②④

【解析】

根据题意,以此分析命题:可根据函数的解析式判断出其是一个增函数②由可得到结果;函数f(x)的值域为(﹣1,1),可由绝对值不等式的性质证明得;④由其形式知,此是一个与自然数有关的命题,故采用归纳推理的方法证明,即可得答案.

①函数是一个奇函数,当x≥0时,,判断知函数在(0,+∞)上是一个增函数,由奇函数的性质知,函数(xR)是一个增函数,故若x1≠x2,则一定有f(x1)≠f(x2),此命题①不正确;

②由①已证,故此命题正确;

|x|<1+|x|,故 ,函数f(x)的值域为(﹣1,1),③不正确;

n=1,f1(x)=f(x)= 假设n=k时,成立,则n=k+1时, 成立,类推可得到,此命题正确.

故答案为②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的最小正周期;
(2)当 时,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个几何体的平面展开图,其中四边形ABCD为正方形,△PDC, △PBC, △PAB, △PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为 ( )

A. 平面BCD⊥平面PAD B. 直线BE与直线AF是异面直线

C. 直线BE与直线CF共面 D. 面PAD与面PBC的交线与BC平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】湖南省某自来水公司每个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过30吨时,按每吨2元收取;当该用户用水量超过30吨但不超过50吨时,超出部分按每吨3元收取;当该用户用水量超过50吨时,超出部分按每吨4元收取。

(1)记某用户在一个收费周期的用水量为吨,所缴水费为元,写出关于的函数解析式;

(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为214元,且甲、乙两用户用水量之比为3:2,试求出甲、乙两用户在该收费周期内各自的用水量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10 米,记∠BHE=θ.

(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)问:当θ取何值时,污水净化效果最好?并求出此时管道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,试判断函数在区间上的单调性,并证明;

若不等式上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,且
(1)求cos2θ与 的值;
(2)若 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f( )=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f( )=﹣ ,α∈( ,π),求sin(α+ )的值.

查看答案和解析>>

同步练习册答案