解:假设ω是正实数,那么有ω=z2+u2+2uz=(z+u)2>0.
而z+u=(1-cosθ+a2)+(a+sinθ)i,
∴(z+u)∈R.
因而a+sinθ=0,
即a=-sinθ. (1)
又zu=(1-cosθ+isinθ)(a2+ai)=a2(1-cosθ)-asinθ+[a2sinθ+a(1-cosθ)]i是纯虚数,
∴
将 (1)代入 (3)得sin3θ-sinθ+sinθcosθ≠0,
即sinθ(sin2θ-1+cosθ)≠0,
∴sinθ≠0.
将 (1)代入 (2)得sin2θ(1-cosθ)+sin2θ=0,
即sin2θ(2-cosθ)=0.
∵sinθ≠0,
∴cosθ=2矛盾.
这是不可能的,故假设不成立,∴ω不可能是正数.
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com