精英家教网 > 高中数学 > 题目详情

【题目】设函数 ,其中 ,若存在唯一的整数 ,使得 ,则 的取值范围是( )
A.
B.
C.
D.

【答案】A
【解析】设 . 恒过( 恒过(1,0)
因为存在唯一的整数 ,使得 ,所以存在唯一的整数 ,使得 在直线 下方.
因为
所以当 时, , 单调递减;
时, , 单调递增.
所以 .作出函数图象如图所示:

根据题意得: ,解得: .
故答案为:A.
根据题目中所给的条件的特点,先构造函数g(x)=ex(2x-1),h(x)=mx-m,将原问题转化为:存在唯一的整数x0使得g(x0)在直线y=mx-m的下方.最后利用导数知识求函数的极值,结合图形可得关于字母m的不等关系,解关于m的不等式组可得m 的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 ,函数 的最小值为4.
(1)求 的值;
(2)求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数为奇函数的是( )
A.y=x3+3x2
B.y=
C.y=xsin x
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 的参数方程为 为参数),直线 的参数方程为 为参数).
(Ⅰ)求曲线 和直线 的普通方程;
(Ⅱ)若点 为曲线 上一点,求点 到直线 的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,直线 的参数方程为 为参数),直线 的参数方程为 为参数),设 的交点为 ,当 变化时, 的轨迹为曲线 .
(1)写出 的普遍方程及参数方程;
(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线 的极坐标方程为 为曲线 上的动点,求点 的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)讨论 的单调性;
(2)若 有两个极值点 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,以原点 为极点,以 轴正半轴为极轴,圆 的极坐标方程为
(1)将圆 的极坐标方程化为直角坐标方程;
(2)过点 作斜率为1直线 与圆 交于 两点,试求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 与直线 相切.
(1)若直线 与圆 交于 两点,求
(2)设圆 轴的负半轴的交点为 ,过点 作两条斜率分别为 的直线交圆 两点,且 ,试证明直线 恒过一定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合U=R,A={x|x2x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是( )

A.{x|x≥1}
B.{x|1≤x<2}
C.{x|0<x≤1}
D.{x|x≤1}

查看答案和解析>>

同步练习册答案