精英家教网 > 高中数学 > 题目详情

已知定义在区间(-1,1)内的奇函数f(x)是减函数,若f(1-m)+f(1-m2)<0,求m的范围.

解:根据题意,∵f(1-m)+f(1-m2)<0,
∴f(1-m)<-f(1-m2),
又∵f(x)是奇函数,则-f(1-m2)=f(m2-1),
∴f(1-m)<f(m2-1),
又∵f(x)是减函数,
∴有1-m>m2-1;
又∵函数的定义域为(-1,1);
∴-1<1-m<1,-1<1-m2<1;
综合有,解可得0<m<1;
故m的取值范围为(0,1).
分析:根据题意,将f(1-m)+f(1-m2)<0变形为f(1-m)<-f(1-m2),又因为f(x)是奇函数,原不等式又可变形为f(1-m)<f(m2-1),结合f(x)是减函数,可得1-m>m2-1;再由函数的定义域为(-1,1),可得-1<1-m<1,-1<1-m2<1;综合可得不等式,解可得m的取值范围,即得答案.
点评:本题考查奇偶性与单调性的综合,解答的易错点为忽略函数的定义域,而只解“1-m>m2-1”一个方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在区间(-1,1)上的函数f(x)=
ax+b
x2+1
为奇函数.且f(
1
2
)=
2
5

(1)、求实数a、b的值.
(2)、求证:函数f(x)在区间(-1,1)上是增函数.
(3)、解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(-1、1)上的函数f(x)=
mx+n
x2+1
为奇函数.且f(
1
2
)=
2
5

(1)、求实数m、n的值.
(2)、解关于 t 的不等式f(t-1)+f(t-2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(I)计算:0.25×(-
1
2
)-1-4÷(
5
-1)0-(
1
27
)-
1
3
+lg25+2lg2

(II)已知定义在区间(-1,1)上的奇函数f(x)单调递增.解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(-1,1)上的函数f(x)=
ax+b
1+x2
为奇函数,且f(
1
2
)=
2
5

(1)求实数a,b的值;
(2)用定义证明:函数f(x)在区间(-1,1)上是增函数;
(3)解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(-1,1)上的偶函数f(x),在(0,1)上为增函数,f(a-2)-f(4-a2)<0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案