精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$是平面内两个互相垂直的单位向量,且(3$\overrightarrow{a}$-$\overrightarrow{c}$)$•(4\overrightarrow{b}-\overrightarrow{c})$=0,则|$\overrightarrow{c}$|的最大值是(  )
A.3B.4C.5D.6

分析 由题意设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(x,y),由已知的等式得到$\overrightarrow{c}$的坐标等式,由它的几何意义求最值.

解答 解:设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(x,y),则3$\overrightarrow{a}$-$\overrightarrow{c}$=(3-x,-y)=0,$4\overrightarrow{b}-\overrightarrow{c}$=(-x,4-y),由(3$\overrightarrow{a}$-$\overrightarrow{c}$)$•(4\overrightarrow{b}-\overrightarrow{c})$=0得到-x(3-x)-y(4-y)=0,即(x-$\frac{3}{2}$)2+(y-2)2=$\frac{25}{4}$,
所以$\overrightarrow{c}$在以($\frac{3}{2}$,2)为圆心,$\frac{5}{2}$为半径的圆上,所以|$\overrightarrow{c}$|的最大值是($\sqrt{(\frac{3}{2})^{2}+{2}^{2}}+\frac{5}{2}$=5;
故选C.

点评 本题考查了平面向量的运用;关键是坐标化后,利用几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.袋中有大小相同的2个红球,3个白球,从中放回的摸两次,每次摸取一球,在已知第一次取出红球的前提下,第二次求得红球的概率是(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点A(2,1)到圆C:x2+(y-1)2=1上一点的距离的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.曲线y=f(x)在x=2处的切线方程为y=-x+6,则f(2)+f′(2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=x2+bx+1,
(1)若函数f(x)在[1,+∞)上单调递增,求实数b的取值范围;
(2)是否存在实数b,使得函数f(x)在区间[0,1]上有两个不同的零点?若存在,求实数b的取值范围,若不存在,请说明理由;
(3)若f(x)≥f(-$\frac{1}{2}$)对任意x∈R恒成立,求证:当x>0时,$\frac{f(x)}{{e}^{x}}$<x2+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校为了调查高三年级学生某次联考数学成绩情况,用简单随机抽样,抽取了50名高三年级学生,以他们的数学成绩(百分制)作为样本,得到如下的频数分布表:
频数[50,60)[60,70)[70,80)[80,90)[90,100]
频数31319114
(Ⅰ)若该校高三年级每位学生被抽取的概率为0.1,求该校高三年级学生的总人数;
(Ⅱ)估计这次联考该校高三年级学生数学成绩的平均分及方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)根据以上抽样数据,能否认为该校高三年级本次联考数学成绩符合“优秀(80分及80分以上为优秀)率不低于25%”的要求?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m,n是不同的直线,α,β,γ是不同的平面,给出以下命题:
①若α⊥β,α∩β=m,n⊥m,则n⊥α,或n⊥β;
②若α∥β,α∩γ=m,β∩γ=n,则m∥n;
③若m不垂直于α,则m不可能垂直于α内的无数条直线;
④若α∩β=m,n∥m,n?α,n?β,则n∥α,且n∥β.
其中,正确的命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),ab=2$\sqrt{3}$,离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设A为椭圆的左顶点,过椭圆的右焦点F的直线交椭圆于M,N两点,直线AM,AN与直线x=4交于P,Q两点.证明:以PQ为直径的圆恒过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若等差数列{an}的前三项分别为a-1,a+1,2a+3,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案