精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同;曲线 的方程是,直线的参数方程为为参数,),设 直线与曲线交于 两点.

(1)当时,求的长度;

(2)求的取值范围.

【答案】1;(2).

【解析】

试题分析:1将曲线的方程化为直角坐标方程求出圆心和半径,直线参数方程化为普通方程,利用点到直线的距离公式及勾股定理解答;(2)直线参数方程代入圆的直角坐标方程,根据直线参数的几何意义将表示为,利用三角函数的有界性可得结论.

试题解析:(1)曲线的方程为,其为圆心为,半径为的圆.

又当时,直线,所以圆心到直线的距离为

所以

(2)设为相应参数值,,由,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求证:
(1)BC⊥平面SAC;
(2)AD⊥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x﹣2ay+a2﹣24=0(a∈R)的圆心在直线2x﹣y=0上.
(1)求实数a的值;
(2)求圆C与直线l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)相交弦长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若,求曲线在点处的切线方程;

(2)若不等式对任意恒成立.(i)求实数的取值范围;(ii)试比较的大小,并给出证明(为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知an=logn+1(n+2)(n∈N*).我们把使乘积a1a2a3…an为整数的数n叫做“优数”,则在区间(1,2004)内的所有优数的和为(
A.1024
B.2003
C.2026
D.2048

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年某招聘会上,有5个条件很类似的求职者,把他们记为A,B,C,D,E,他们应聘秘书工作,但只有2个秘书职位,因此5人中仅有2人被录用,如果5个人被录用的机会相等,分别计算下列事件的概率:
(1)C得到一个职位
(2)B或E得到一个职位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若,且,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N*均有 =an+1成立,求c1+c2+c3+…+c2016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接党的“十九”大的召开,某校组织了“歌颂祖国,紧跟党走”党史知识竞赛,从参加考试的学生中抽出50名学生,将其成绩(满分100分,成绩均为整数)分成六段 后绘制频率分布直方图(如下图所示)

(Ⅰ)求频率分布图中的值;

(Ⅱ)估计参加考试的学生得分不低于80的概率;

(Ⅲ)从这50名学生中,随机抽取得分在的学生2人,求此2人得分都在的概率.

查看答案和解析>>

同步练习册答案