精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=2BC,点M在边DC上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C得四棱锥D′﹣ABCM.

(1)求证:AM⊥D′F;
(2)若∠D′EF= ,直线D'F与平面ABCM所成角的大小为 ,求直线AD′与平面ABCM所成角的正弦值.

【答案】
(1)证明:∵AM⊥D′E,AM⊥EF,D′E∩⊥EF=E,

∴AM⊥面D′EF

∵D′F面D′EF,

∴AM⊥D′F;


(2)解:由(1)知,AM⊥面D′EF,AM平面ABCM,

∴平面ABCM⊥面D′EF,

∴过D′作D′H⊥EF,则D′H⊥平面ABCM,

∴∠D′FH也就是∠D′FE是直线D'F与平面ABCM所成角,由已知,∠D′FE=

并且∠D′AH是所求的直线AD′与平面ABCM所成角.

∵∠D′EF= ,且∠D′FE=

在三角形△D′EF中,∵∠D′EF= ,且∠D′FE=

所以是等边三角形,∴D′E=EF,即DE=EF,∴△DAF是等腰三角形.

设AD=2,∴AF=2,EF= ,四棱锥D′﹣ABCM的高D′H=

由于直线AD′与平面ABCM所成角为∠D′AH,∴sin∠D′AH= =


【解析】(1)根据图形折叠前后的关系,易证AM⊥面D′EF,得出AM⊥D′F.(2)由(1)知,AM⊥面D′EF,所以平面ABCM⊥面D′EF,过D′作D′H⊥EF,则D′H⊥平面ABCM,,∠D′FH是直线D'F与平面ABCM所成角,∠D′AH是直线AD′与平面ABCM所成角在直角三角形D′AH求解即可.
【考点精析】根据题目的已知条件,利用直线与平面垂直的性质和空间角的异面直线所成的角的相关知识可以得到问题的答案,需要掌握垂直于同一个平面的两条直线平行;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数g(x)=log2 (x>0),关于方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,则实数m的取值范围为(
A.(﹣∞,4﹣2 )∪(4 ,+∞)
B.(4﹣2 ,4
C.(﹣ ,﹣
D.(﹣ ,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面 .

1)证明

2)求二面角的余弦值;

3)设点为线段上一点,且直线平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱锥V﹣ABC的底面边长为2,E,F,G,H分别是VA,VB,BC,AC的中点,则四边形EFGH的面积的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且当时, ,则对任意,函数的零点个数至多有( )

A. 3个 B. 4个 C. 6个 D. 9个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)对任意x∈R,恒有(f(x)﹣sinx)(f(x)﹣cosx)=0成立,则下列关于函数 y=f(x)的说法正确的是(
A.最小正周期是2π
B.值域是[﹣1,1]
C.是奇函数或是偶函数
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列各条件的椭圆的标准方程.
(1)长轴长是短轴长的2倍且经过点A(2,0);
(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣x2+1.

(Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数ab的值;

(Ⅱ)讨论函数f(x)的单调性;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知θ∈( ),若存在实数x,y同时满足 = + = ,则tanθ的值为

查看答案和解析>>

同步练习册答案