分析 (1)直接利用同角三角函数的基本关系,求得要求式子的值.
(2)利用同角三角函数的基本关系的应用,以及三角函数在各个象限中的符号,求得sinα和 cosα的值,再利用诱导公式可得要求式子的值.
解答 解:(1)∵α为△ABC的内角,且tanα=-$\frac{3}{4}$,∴$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=$\frac{-\frac{3}{4}+1}{-\frac{3}{4}-1}$=-$\frac{1}{7}$.
(2)由题意可得,α为钝角,tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,sin2α+cos2α=1,∴sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,
∴sin($\frac{π}{2}$+α)-cos($\frac{π}{2}$-α)=cosα-sinα=-$\frac{7}{5}$.
点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 8m/s | B. | 10m/s | C. | 16m/s | D. | 18m/s |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-$\frac{2π}{3}$,0) | B. | ($\frac{2π}{3}$,0) | C. | ($\frac{π}{12}$,0) | D. | (-$\frac{π}{6}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
f(x) | a | -1 | 1.58 | b | -5.68 | -39.42 | -109.19 | -227 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1:2:3 | B. | 1:4:9 | C. | 2:3:4 | D. | 4:9:16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com