精英家教网 > 高中数学 > 题目详情
14.在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和B1C1的中点,那么直线AM与CN所成角的余弦值是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 取AB中点E,BC中点F,连接B1E,B1F,则∠EB1F为直线AM与CN所成角,设正方体棱长为2a,然后利用余弦定理求解.

解答 解:如图,取AB中点E,BC中点F,连接B1E,B1F,
则四边形AEB1M,B1FCN为平行四边形,
∴AM∥B1E,CN∥B1F,
∴∠EB1F为直线AM与CN所成角(或补角),
正方体的棱长为1,则BE=BF=$\frac{1}{2}$,EF=$\frac{\sqrt{2}}{2}$,B1F=B1E=$\frac{\sqrt{5}}{2}a$,
∴cos∠EB1F=$\frac{4}{5}$.
∴直线AM与CN所成角的余弦值是$\frac{4}{5}$.
故选:D.

点评 本题考查异面直线所成的角,关键是找出角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.如果不等式组$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤1}\\{y≤1}\end{array}\right.$表示的平面区域内存在点P(x0,y0)在函数y=2x+a的图象上,那么实数a的取值范围是[-3,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.平面α截半径为2的球O所得的截面圆的面积为π,则球心到O平面α的距离为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列导数公式错误的是(  )
A.(sinx)'=-cosxB.$(lnx)'=\frac{1}{x}$C.$(\frac{1}{x})'=-\frac{1}{x^2}$D.(ex)'=ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=ln x,g(x)=f(x)+f′(x),求g(x)的单调区间和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算下列定积分.
(1)$\int_{-3}^2{|{x+1}|}dx$
(2)设$f(x)=\left\{\begin{array}{l}{x^2}(0≤x<1)\\ 2-x(1≤x≤2)\end{array}\right.$,则$\int_0^2{f(x)dx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1所围成的平面图形的面积A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数的导数
(1)y=$\frac{1}{{x}^{2}}$;   
(2)y=$\root{3}{x}$;     
(3)y=2x;     
(4)y=log3x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点P(0,-2),椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,F是椭圆E的右焦点,直线PF的斜率为2,O为坐标原点.
(1)求椭圆E的方程;
(2)直线l被圆O:x2+y2=3截得的弦长为3,且与椭圆E交于A、B两点,求△AOB面积的最大值.

查看答案和解析>>

同步练习册答案