精英家教网 > 高中数学 > 题目详情

【题目】设圆的圆心为,直线过点且不与轴、轴垂直,且与圆 两点,过的平行线交直线于点.

(1)证明为定值,并写出点的轨迹方程;

(2)设点的轨迹为曲线,直线两点,过且与垂直的直线与圆交于两点,求的面积之和的取值范围.

【答案】(1).(2)

【解析】试题分析:(1)先证明,可得, 进而得由双曲线定义知轨迹是双曲线,从而可得方程;(2)联立直线与双曲线的方程,消去根据弦长公式、点到直线距离公式及三角形面积公式可得三角形面积之和成关于 的函数,利用单调心求解即可.

试题解析:(1)

,圆心,半径,如图所示.

因为,所以.又因为,所以

所以

又因为,所以

,可得

根据双曲线的定义,可知点的轨迹是以为焦点的双曲线(顶点除外),

易得点的轨迹方程为.

(2).

依题意可设

由于,设.

圆心到直线的距离

所以

又因为,解得.

联立直线与双曲线的方程,消去

所以

的面积分别为

又因为,所以

所以的取值范围为.

【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用单调性法法求三角形三角形面积之和的最值的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.

上图中,已知课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取的学生作为研究样本组(以下简称“组M”).

(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?

(Ⅱ)为参加某地举办的自然科学营活动,从“组M”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F或课程H的同学参加本次活动,费用为每人1500元,选择课程G的同学参加,费用为每人2000元.

(ⅰ)设随机变量表示选出的4名同学中选择课程的人数,求随机变量的分布列;

(ⅱ)设随机变量表示选出的4名同学参加科学营的费用总和,求随机变量的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+α)(A>0,ω>0,﹣ <α< )的最小正周期是π,且当x= 时,f(x)取得最大值2.
(1)求f(x)的解析式,并作出f(x)在[0,π]上的图象(要列表);
(2)将函数f(x)的图象向右平移m(m>0)个单位长度后得到函数y=g(x)的图象,且y=g(x)是偶函数,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在等腰梯形中, .把沿折起,使得,得到四棱锥.如图2所示.

(1)求证:面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是(
A.这种抽样方法是一种分层抽样
B.这种抽样方法是一种系统抽样
C.这五名男生成绩的方差大于这五名女生成绩的方差
D.该班男生成绩的平均数大于该班女生成绩的平均数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点,其中为常数, 为自然对数的底数.

(1)求实数的取值范围;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式(a2﹣a)4x﹣2x﹣1<0在区间(﹣∞,1]上恒成立,则实数a的取值范围为(
A.(﹣2,
B.(﹣∞,
C.(﹣
D.(﹣∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,试求的单调增区间;

(2)试求上的最大值;

(3)当时,求证:对于恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体由一个正三棱柱截去一个三棱锥而得, 平面 的中点, 为棱上一点,且平面.

(1)若在棱上,且,证明: 平面

(2)过作平面的垂线,垂足为,确定的位置(说明作法及理由),并求线段的长.

查看答案和解析>>

同步练习册答案