精英家教网 > 高中数学 > 题目详情

已知函数.(

(1)当时,求在区间[1,e]上的最大值和最小值;

(2)若在区间(1,+∞)上,函数的图象恒在直线下方,求的取值范围.

(Ⅰ)当时,

对于[1,e],有,∴在区间[1,e]上为增函数,

.

(Ⅱ)令,则的定义域为(0,+∞).

在区间(1,+∞)上函数的图象恒在直线下方等价于在区间(1,+∞)上恒成立. 

① 若,令,得极值点

,即时,在(,+∞)上有

此时在区间(,+∞)上是增函数,并且在该区间上有

∈(,+∞),不合题意;

,即时,同理可知,在区间(1,+∞)上,有

∈(,+∞),也不合题意;

② 若,则有,此时在区间(1,+∞)上恒有

从而在区间(1,+∞)上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是[].

综合①②可知,当∈[]时,

函数的图象恒在直线下方.


解析:

⑴当时,,求其在给定区间上的最值,可以借助导数解决;⑵函数的图象在直线的下方,说明在给定区间上恒成立,恒成立问题可以转化为函数的最值来解决,再次利用导数计算求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=ax3+bx2+6x+1的递增区间为(-2,3),则a,b的值分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
2x
+1-alnx
,a>0,
(1)讨论f(x)的单调性;
(2)设a=3,求f(x)在区间[1,e2]上值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a
1-x2
+
1+x
+
1-x
的最大值为g(a).
(1)设t=
1+x
+
1-x
,求t的取值范围;
(2)求g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:函数f(x)在R上为增函数;
(2)当函数f(x)为奇函数时,求a的值;
(3)当函数f(x)为奇函数时,求函数f(x)在[-1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x(x+1),x≥0
x(1-x),x<0
,则f(0)=
 

查看答案和解析>>

同步练习册答案