(本题满分12分)
若,且,
(1)求的最小值及相应 x的值;
(2)若,求x的取值范围.
(1)f (log2x)有最小值,x=(2)0<x<1
【解析】
试题分析:(1)∵f (x)=x2-x+b,∴f (log2a)= (log2a)2-log2a+b=b,∴log2a=1∴a=2. ……2分
又∵log2f(a)=2,f(a)=4.∴a2-a+b=4,∴b=2.∴f (x)=x2-x+2 ……4分
∴f (log2x)= (log2x)2-log2x+2= (log2x-)2+,
∴当log2x=,即x=时,f (log2x)有最小值. ……6分
(2)由题意知 ……8分
∴ ……10分
∴ ∴ 0<x<1 ……12分
考点:函数求解析式及解不等式
点评:求函数解析式主要用到的是待定系数法,整道题目在求解过程中多处涉及到了对数运算需结合对数函数性质考虑,整体来看难度不大,需分析求解时认真细心
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com