精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的六面体中,面是边长为2的正方形,面是直角梯形,.

(1)求证:平面

(2)若二面角为60°,求直线和平面所成角的正弦值.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)连接相交于点,取的中点为,连接,易证四边形是平行四边形,从而可得结论;(2)以为坐标原点,轴、轴、轴建立空间直角坐标系.则,计算法向量,根据公式即可求出.

试题解析:

(1):连接相交于点,取的中点为,连接.

是正方形,的中点,,

又因为,所以,

所以四边形是平行四边形,

,又因为平面平面

平面

(2)是正方形,是直角梯形,,

,平面,同理可得平面.

平面,所以平面平面,

又因为二面角为60°,

所以,由余弦定理得,

所以,因为半面

,所以平面,

为坐标原点,轴、轴、轴建立空间直角坐标系.

,

所以,

设平面的一个法向量为,

,则

所以

设直线和平面所成角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆有以下性质:

①过圆上一点的圆的切线方程是.

②若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则垂直,即.

(1)类比上述有关结论,猜想过椭圆上一点的切线方程 (不要求证明);

(2)若过椭圆外一点不在坐标轴上)作两直线,与椭圆相切于两点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年是中华人民共和国成立70周年,某校党支部举办了一场“我和我的祖国”知识竞赛,满分100分,回收40份答卷,成绩均落在区间内,将成绩绘制成如下的频率分布直方图.

1)估计知识竞赛成绩的中位数和平均数;

2)从分数段中,按分层抽样随机抽取5份答卷,再从对应的党员中选出3位党员参加县级交流会,求选出的3位党员中有2位成绩来自于分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为 ,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】首届中国国际进口博览会在2018年11月5日—10日在上海国家会展中心举办。会议期间,某公司欲采购东南亚某水果种植基地的水果,公司刘总经理与该种植基地的负责人陈老板商定一次性采购一种水果的采购价(元/吨)与采购量(吨)之间的函数关系的图象如图中的折线所示(不包含端点,但包含端点).

(Ⅰ)求之间的函数关系式;

(Ⅱ)已知该水果种植基地种植该水果的成本是2800元/吨,那么刘总经理的采购量为多少时,该水果基地在这次买卖中所获得利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产甲、乙两种产品所得利润分别为(万元),它们与投入资金(万元)的关系有经验公式.今将120万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投资金额都不低于20万元.

(Ⅰ)设对乙产品投入资金万元,求总利润(万元)关于的函数关系式及其定义域;

(Ⅱ)如何分配使用资金,才能使所得总利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,平面平面 .

(Ⅰ)求证: 平面

(Ⅱ)点在线段上运动,设平面与平面所成锐二面角为,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,证明:当时,

(2)若只有一个零点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数=[]

若曲线y= fx在点(1,处的切线与轴平行a

x=2处取得极小值a的取值范围

查看答案和解析>>

同步练习册答案