精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:
(1)2sinBcosC﹣sin(B﹣C)的值;
(2)若a=2,求△ABC周长的最大值.

【答案】
(1)解:∵b2+c2=a2+bc,∴a2=b2+c2﹣bc,

结合余弦定理知cosA= = =

又A∈(0,π),∴A=

∴2sinBcosC﹣sin(B﹣C)=sinBcosC+cosBsinC

=sin(B+C)=sin[π﹣A]=sinA=


(2)解:由a=2,结合正弦定理得:

= =

∴b= sinB,c= sinC,

则a+b+c=2+ sinB+ sinC

=2+ sinB+ sin( ﹣B)

=2+2 sinB+2cosB=2+4sin(B+ ),

可知周长的最大值为6


【解析】(1)根据余弦定理表示出cosA,把已知得等式变形后代入即可求出cosA的值,由A的范围,利用特殊角的三角函数值即可求出A的度数,然后把所求的式子利用两角和与差的正弦函数公式及诱导公式化简,将sinA的值代入即可求出值;(2)由a=2和sinA的值,根据正弦定理表示出b和c,代入三角形的周长a+b+c中,利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据正弦函数的值域即可得到周长的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为,其离心率,以原点为圆心,椭圆的半焦距为半径的圆与直线相切.

(1)求的方程;

(2)过的直线两点, 的中点,连接并延长交于点,若四边形的面积满足: ,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P为△ABC内一点,且满足 ,记△ABP,△BCP,△ACP的面积依次为S1 , S2 , S3 , 则S1:S2:S3等于(
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,各棱长均为6 分别是侧棱上的点,且.

(1)在上是否存在一点,使得平面?证明你的结论;

2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线L:kx-y+1+2k=0.

(1)求证:直线L过定点;

(2)若直线L交x轴负半轴于点A交y正半轴于点BAOB的面积为S试求S的最小值并求出此时直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年被业界称为(虚拟现实技术)元年,未来技术将给教育、医疗、娱乐、商业、交通旅游等多领域带来极大改变,某教育设备生产企业有甲、乙两类产品,其中生产一件甲产品需团队投入15天时间, 团队投入20天时间,总费用10万元,甲产品售价为15万元/件;生产一件乙产品需团队投入20天时间, 团队投入16天时间,总费用15万元,乙产品售价为25万元/件, 两个团队分别独立运作.现某客户欲以不超过200万元订购该企业甲、乙两类产品,要求每类产品至少各3件,在期限180天内,为使企业总效益最佳,则最后交付的甲、乙两类产品数之和为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)在ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣sinA)cosB=0.

(1)求角B的大小; (2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数)

(1)设过点的直线与曲线相切于点,求的值;

(2)函数的的导函数为,若上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)通过()中的方程,求出y关于x的回归方程;

(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程其中

查看答案和解析>>

同步练习册答案