精英家教网 > 高中数学 > 题目详情
P是△ABC所在平面外一点,且PA=PB=PC.PH⊥平面ABC.垂足为H,则H为△ABC的( )
A.垂心
B.外心
C.内心
D.重心
【答案】分析:点P在平面ABC上的投影为H,利用已知条件,结合勾股定理,证明出HA=HB=HC,进而根据三角形五心的定义,得到结论.
解答:解:由题意知,点P作平面ABC的射影H,
且PA=PB=PC,因为PH⊥底面ABC,
所以△PAH≌△PBH≌△PCH,
即:HA=HB=HC,
所以H为三角形的外心.
故选B.
点评:本题考查棱锥的结构特征,三角形五心的定义,考查逻辑思维能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P是△ABC所在平面上一点,且
CA
-
CP
=
CP
-
CB
,若△ABC的面积为2,则△PBC面积为(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是△ABC所在平面内的一点,
BC
+
BA
=2
BP
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AB
AC
=0

(1)若P是△ABC所在平面上一点,且|
AP
|=2,∠CAP为锐角,
AP
AC
=2
AP
AB
=2
,求|
AB
+
AC
+
AP
|的最小值.
(2)满足条件(1)的点P能否在△ABC的边BC上?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是△ABC所在平面外一点,点O是点P在平面ABC上的射影.若PA=PB=PC,则O是△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是△ABC所在平面内一点,若(15sinA)
PA
+(12sinB)
PB
+(10sinC)
PC
=
0
BA
+
BC
=3
BP
则下列正确的命题序号是
①③④
①③④

①P是△ABC的重心    ②△ABC是锐角三角形  ③△ABC的三边长有可能是三个连续的整数  ④∠C=2∠A.

查看答案和解析>>

同步练习册答案