已知函数的定义域为
,且满足条件:①
,②
③当
.
(1)求证:函数为偶函数;
(2)讨论函数的单调性;
(3)求不等式的解集
解:(1)在①中令x=y=1, 得f(1)=
f(1)+ f(1) f(1)=0,
令x=y=-1, 得f(1)=
f(-1)+ f(-1) f(-1)=0,
再令y=-1, 得f(-x)= f(x)+ f(-1) f(x),
∴f(x)为偶函 数;
(2)在①中令
先讨论上的单调性, 任取x1http://www.zxxk.com/x2,设x2>x1>0,
由③知:>0,∴f(x2)>f(x1), ∴f(x)在(0,+∞)上是增函数,
∵偶函数图象关于y轴对称 ,∴f(x)在(-∞,0)上是减函数;[来源:Z+xx+k.Com]
(3)∵f[x(x-3)]= f(x)+ f(x-3)≤2, 由①②得2=1+1= f(2)+ f(2)= f(4)= f(-4),
1)若x(x-3)>0 , ∵f(x)在(0,+∞)上为增函数,
由f[x(x-3)] ≤f(4) 得
2)若x(x-3)<0, ∵f(x)在(-∞,0)上为减函数;
由f[x(x-3)] ≤f(-4)得
∴原不等式的解集为:
【解析】略
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年浙江省杭州市七校高三上学期期中联考理科数学试卷(解析版) 题型:解答题
已知函数的定义域为
,
(1)求;
(2)若,且
是
的真子集,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届辽宁朝阳高二下学期期中考试理科数学试卷(解析版) 题型:选择题
已知函数的定义域为
,部分对应值如下表。
的导函数
的图像如图所示。
|
|
0 |
|
|
|
|
|
|
|
|
|
下列关于函数的命题:
①函数在
上是减函数;②如果当
时,
最大值是
,那么
的最大值为
;③函数
有
个零点,则
;④已知
是
的一个单调递减区间,则
的最大值为
。
其中真命题的个数是( )
A、4个 B、3个 C、2个 D、1个
查看答案和解析>>
科目:高中数学 来源:2010-2011学年海南省海口市高三高考调研考试理科数学 题型:选择题
已知函数的定义域为
,且
,
为
的导函数,函数
的图象如图所示.若正数
,
满足
,则
的取值范围是
A. B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com