精英家教网 > 高中数学 > 题目详情
2.如图所示,A,B分别是椭圆的右、上顶点,C是AB的三等分点(靠近点B),F为椭圆的右焦点,OC的延长线交椭圆于点M,且MF⊥OA,则椭圆的离心率为$\frac{\sqrt{5}}{5}$.

分析 设A(a,0),B(0,b),F(c,0),椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),求得C和M的坐标,运用O,C,M共线,即有kOC=kOM,再由离心率公式计算即可得到所求值.

解答 解:设A(a,0),B(0,b),F(c,0),
椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
令x=c,可得y=b$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=$\frac{{b}^{2}}{a}$,
即有M(c,$\frac{{b}^{2}}{a}$),
由C是AB的三等分点(靠近点B),
可得C($\frac{a}{1+2}$,$\frac{2b}{1+2}$),即($\frac{a}{3}$,$\frac{2b}{3}$),
由O,C,M共线,可得kOC=kOM
即为$\frac{2b}{a}$=$\frac{{b}^{2}}{ac}$,即有b=2c,
a=$\sqrt{{b}^{2}+{c}^{2}}$=$\sqrt{5}$c,则e=$\frac{c}{a}$=$\frac{\sqrt{5}}{5}$.
故答案为:$\frac{\sqrt{5}}{5}$.

点评 本题考查椭圆的方程和性质,主要考查椭圆的离心率的求法,注意运用直线的有关知识,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.圆(x-1)2+(y+2)2=20上到直线x-2y=0的距离为$\sqrt{5}$的点的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.
(1)求函数 f(x)在R上的解析式;
(2)画出函数f(x)的图象,并求出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{1}{2}$ax2+ax+lnx,
(1)当a=0时,g(x)=f(x)-(x-1)2.求g(x)在点(1,0)的切线方程;
(2)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=log3(4x-1)的定义域为(  )
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2},+∞$)C.($\frac{1}{4},\frac{1}{2}$]D.($\frac{1}{4},+∞$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,我市体育公园的运动休闲区域的平面图如图所示,在y轴左侧的运动区的边界曲线段是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),x∈[-4,0]时的图象且最高点B(-1,$\frac{4\sqrt{3}}{3}$),在y轴右侧的休闲区的边界曲线段是以P为圆心,CO为直径的半圆弧,D、E两点在半圆弧上,满足$\widehat{CE}$=$\widehat{DE}$.
(1)求函数f(x)的解析式;
(2)现要在休闲区的半圆中进行绿化规划,在扇形CPD内种植草坪,在△DPE和弓形OEFO内种植花卉,已知种植花卉的每平方米的成本是种植草坪的每平方米的成本的2倍,设∠CPD=θ(弧度),则当θ为何值时,休闲区的种植总成本最低.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ax2-1的图象在点A(1,f(1))处的切线l与直线8x-y+2=0平行,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则S2015的值为(  )
A.$\frac{4030}{4031}$B.$\frac{2014}{4029}$C.$\frac{2015}{4031}$D.$\frac{4030}{4031}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin2ωx+cos2ωx.(ω>0)的最小正周期为4π,
(Ⅰ)求ω的值及函数f(x)的单调递减区间;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标向右平行移动$\frac{π}{4}$个单位长度,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在$[{\frac{π}{4},\frac{7π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,一个正三棱柱的左视图是边长为$\sqrt{3}$的正方形,则它的外接球的表面积等于(  )
A.B.$\frac{25π}{3}$C.D.$\frac{28π}{3}$

查看答案和解析>>

同步练习册答案