分析 (1)利用奇函数的定义f(x)+f(-x)=0得到a 的等式求a.
(2)利用(1)的解析式得到真数的关系,利用恒成立问题即求最值,得到m的范围.
解答 解:(1)∵函数f(x)=log2$\frac{x+a}{x-1}$(a>0)为奇函数.
∴f(x)+f(-x)=0即$lo{g}_{2}\frac{x+a}{x-1}+lo{g}_{2}\frac{-x+a}{-x-1}$=0,所以$lo{g}_{2}\frac{{x}^{2}-a}{{x}^{2}-1}=0$,得到$\frac{{x}^{2}-a}{{x}^{2}-1}$=1,所以a=1;
(2)x∈(1,4],f(x)>log2$\frac{m}{x-1}$恒成立,即$\frac{x+1}{x-1}>\frac{m}{x-1}$,x∈(1,4],所以0<m<x+1恒成立,
所以0<m≤2.即实数m的取值范围是(0,2].
点评 本题考查了函数奇偶性的运用以及对数不等式恒成立问题;关键是找到对数中真数的关系.
科目:高中数学 来源: 题型:选择题
A. | (x-2)2+(y-1)2=4 | B. | (x-2)2+(y-1)2=2 | C. | (x+2)2+(y+1)2=4 | D. | (x+2)2+(y+1)2=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{9}$ | B. | ±$\frac{5}{9}$ | C. | -$\frac{5}{9}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com