15£®Ä³µçÊǪ́ΪÐû´«º£ÄÏ£¬Ëæ»ú¶Ôº£ÄÏ15¡«65ËêµÄÈËȺ³éÈ¡ÁËnÈË£¬»Ø´ðÎÊÌâ¡°¶«»·Ìú·ÑØÏßÓÐÄļ¸¸ö³ÇÊУ¿¡±Í³¼Æ½á¹ûÈçͼ±íËùʾ£º
×éºÅ·Ö×é»Ø´ðÕýÈ·µÄÈËÊý»Ø´ðÕýÈ·µÄÈËÊýÕ¼±¾×éµÄƵÂÊ
µÚ1×é[15£¬25£©a0.5
µÚ2×é[25£¬35£©18x
µÚ3×é[35£¬45£©b0.9
µÚ4×é[45£¬55£©90.36
µÚ5×é[55£¬65£©3y
£¨1£©·Ö±ðÇó³öa£¬b£¬x£¬yµÄÖµ£»
£¨2£©´ÓµÚ2£¬3£¬4×é»Ø´ðÕýÈ·µÄÈËÖÐÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡6ÈË£¬ÇóµÚ2£¬3£¬4×éÿ×é¸÷³éÈ¡¶àÉÙÈË£¿
£¨3£©ÔÚ£¨2£©³éÈ¡µÄ6ÈËÖÐËæ»ú³éÈ¡2ÈË£¬ÇóËù³éÈ¡µÄÈËÖÐÇ¡ºÃûÓеÚ3×éÈ˵ĸÅÂÊ£®

·ÖÎö £¨1£©¸ù¾ÝƵÂʱíÖÐÊý¾ÝÇó³önµÄÖµ£¬ÔÙ·Ö±ð¼ÆËãa¡¢b¡¢xÓëyµÄÖµ£»
£¨2£©ÀûÓ÷ֲã³éÑù·¨Çó³öµÚ2¡¢3¡¢4×é·Ö±ð³éÈ¡µÄÈËÊý£»
£¨3£©ÀûÓÃÁоٷ¨Çó³ö´Ó6ÈËÖгé2È˵Ļù±¾Ê¼þÊýÒÔ¼°Ëù³éÈ¡µÄÈËÖÐÇ¡ºÃûÓеÚ3×éÈË»ù±¾Ê¼þÊý£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£®

½â´ð ½â£º£¨1£©ÓÉƵÂʱíÖеÚ4×éÊý¾Ý¿ÉÖª£¬µÚ4×é×ÜÈËÊýΪ$\frac{9}{0.36}$=25£¬
½áºÏƵÂÊ·Ö²¼Ö±·½Í¼¿ÉÖªn=$\frac{25}{0.025¡Á10}$=100£¬
¡àa=100¡Á0.01¡Á10¡Á0.5=5£¬
b=100¡Á0.03¡Á10¡Á0.9=27£¬
µÚ¶þ×éÈËÊýΪ0.020¡Á100¡Á10=20£¬
µÚ5×éÈËÊýΪ£º0.015¡Á10¡Á100=15
¡àx=$\frac{18}{20}$=0.9£¬y=$\frac{3}{15}$=0.2£®¡­£¨4·Ö£©
£¨2£©µÚ2£¬3£¬4×é»Ø´ðÕýÈ·µÄ¹²ÓÐ54ÈË£®
¡àÀûÓ÷ֲã³éÑùÔÚ54ÈËÖгéÈ¡6ÈË£¬Ã¿×é·Ö±ð³éÈ¡µÄÈËÊýΪ£º
µÚ2×飺$\frac{6}{54}$¡Á18=2£¨ÈË£©£¬µÚ3×飺$\frac{6}{54}$¡Á27=3£¨ÈË£©£¬
µÚ4×飺$\frac{6}{54}$¡Á9=1£¨ÈË£©£®¡­8·Ö
£¨3£©ÉèËù³éÈ¡µÄÈËÖеÚ2×éµÄ2ÈËΪA1£¬A2£»
µÚ3×éµÄ3ÈËΪB1£¬B2£¬B3£»µÚ4×éµÄ1ÈËΪC1£®
Ôò´Ó6ÈËÖгé2ÈËËùÓпÉÄܵĽá¹ûÓÐ
£¨A1£¬A2£©£¬£¨A1£¬B1£©£¬£¨A1£¬B2£©£¬£¨A1£¬B3£©£¬£¨A1£¬C1£©£¬
£¨A2£¬B1£©£¬£¨A2£¬B2£©£¬£¨A2£¬B3£©£¬£¨A2£¬C1£©£¬£¨B1£¬B2£©£¬
£¨B1£¬B3£©£¬£¨B1£¬C1£©£¬£¨B2£¬B3£©£¬£¨B2£¬C1£©£¬£¨B3£¬C1£©£¬
¹²15¸ö»ù±¾Ê¼þ£¬ÆäÖÐÇ¡ºÃûÓеÚ3×éÈ˹²3¸ö»ù±¾Ê¼þ£¬
¡àËù³éÈ¡µÄÈËÖÐÇ¡ºÃûÓеÚ3×éÈ˵ĸÅÂÊΪ$\frac{3}{15}$=$\frac{1}{5}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËƵÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÓÃÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂʵÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªµÈ±ÈÊýÁÐ{an}¹«±ÈΪq£¬ÆäÇ°nÏîºÍΪSn£¬ÈôS3¡¢S9¡¢S6³ÉµÈ²îÊýÁУ¬Ôòq3µÈÓÚ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®1C£®-$\frac{1}{2}$»ò1D£®-1»ò$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®sin215¡ã-cos215¡ã=-$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¼¯ºÏP={x£¬1}£¬Q={0£¬1£¬2}£¬P¡ÉQ={0£¬1}£¬ÔòxΪ£¨¡¡¡¡£©
A£®0B£®1C£®$\sqrt{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®µÈ±ÈÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬ÇÒ2a1+3a2=1£¬${a_3}^2$=9a2a6£®ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚÒ»ÕŽÚÄ¿±íÖУ¬Ô­ÓÐ6¸ö½ÚÄ¿£¬Èç¹û±£³ÖÕâЩ½ÚÄ¿µÄÏà¶Ô˳Ðò²»±ä£¬ÔÙÌí¼Ó½øÈ¥Á½¸ö½ÚÄ¿£¬Çó¹²ÓÐ56ÖÖ°²ÅÅ·½·¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{4}$=1£¨a£¾0£©µÄʵÖ᳤¡¢ÐéÖ᳤¡¢½¹¾à³¤³ÉµÈ²îÊýÁУ¬ÔòË«ÇúÏߵĽ¥½üÏß·½³ÌΪ£¨¡¡¡¡£©
A£®y=$¡À\frac{5}{4}$xB£®y=$¡À\frac{4}{5}$xC£®y=$¡À\frac{3}{4}$xD£®y=$¡À\frac{4}{3}$x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èô£¨m-1£©+£¨3m+2£©iÊÇ´¿ÐéÊý£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
A£®1B£®1»ò2C£®0D£®-1¡¢1¡¢2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èôcos¦Á=-$\frac{4}{5}$£¬$¦Á¡Ê£¨{\frac{¦Ð}{2}£¬¦Ð}£©$£¬Ôò$cos£¨{¦Á-\frac{¦Ð}{4}}£©$=-$\frac{\sqrt{2}}{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸