精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,过点A(-2,-1)椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,短轴端点为B1、B2
FB1
FB2
=2b2

(1)求a、b的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l.试求直线l的方程.
分析:(1)先求出
FB1
 和
FB2
的坐标,根据
FB1
FB2
=2b2
以及椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点A(-2,-1),列出方程组求得a、b的值.
(2)把直线l的方程和椭圆的方程联立方程组求得 xQ+2=
8k+4
4k2+1
.把OP的方程和椭圆的方程联立方程组求得xP2=
8
1+4k2
.根据AO•AR=3OP2,求得k的值,从而求得直线l的方程.
解答:解:(1)由题意可得 F(-c,0)、B1 (0,-b)、B2(0,b),
FB1
=(c,-b)、
FB2
=(c,b).
FB1
FB2
=2b2
∴c2-b2=2b2 ①.
由于椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点A(-2,-1),∴
4
a2
+
1
b2
=1
 ②.
由①②可解得 a=2
2
,b=
2

(2)设直线l的方程为 y+1=k(x+2),由
y+1=k(x+2)
x2
8
+
y2
2
=1
可得 (x+2)[(4k2+1)(x+2)-(8k+4)]=0.
由于x+2≠0,∴x+2=
8k+4
4k2+1
,即 xQ+2=
8k+4
4k2+1

由题意可得,OP的方程为y=kx,由
y=kx
x2
8
+
y2
2
=1
 可得 (1+4k2)x2=8,∴xP2=
8
1+4k2

∵AO•AR=3OP2,∴|xQ-(-2)|×|0-(-2)|=3xP2,即
8k+4
4k2+1
×2=3×
8
1+4k2

解得k=1,或 k=-2.
当k=1时,直线l的方程为 x-y+1=0.当k=-2时,直线l的方程为 2x+y+5=0.
点评:本题主要考查两个向量的数量积公式的应用,直线和圆锥曲线的关系,韦达定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案