精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标平面内,直线l过点P(1,1),且倾斜角α.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sin θ.

(1)求圆C的直角坐标方程;

(2)设直线l与圆C交于AB两点,求|PA|·|PB|的值.

【答案】(1)x2y2-4y=0.(2)2

【解析】

试题(1)根据将圆C的极坐标方程化为直角坐标方程(2)设直线参数方程,与圆方程联立,根据参数几何意义以及韦达定理得|PA|·|PB|=|t1t2|=2.

试题解析:(1)∵ρ=4sin θ,∴ρ2=4ρsin θ

x2y2-4y=0,

即圆C的直角坐标方程为x2y2-4y=0.

(2)由题意,得直线l的参数方程为

(t为参数).

将该方程代入圆C的方程x2y2-4y=0,

-4=0,

t2=2,∴t1t2=-.

|PA|·|PB|=|t1t2|=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且函数为偶函数。

1)求的解析式;

2)若方程有三个不同的实数根,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若整数满足:,称为离实数最近的整数,记作.给出函数的四个命题:

①函数的定义域为,值域为

②函数是周期函数,最小正周期为

③函数上是增函数;

④函数的图象关于直线对称.

其中所有的正确命题的序号为()

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2pxp0)的焦点为F,直线y=kx+1)与C相切于点A|AF|=2

)求抛物线C的方程;

)设直线lCMN两点,TMN的中点,若|MN|=8,求点Ty轴距离的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为为参数),交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)设点;若成等比数列,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某音乐院校举行“校园之星”评选活动,评委由本校全体学生组成,对两位选手,随机调查了20个学生的评分,得到下面的茎叶图:

所得分数

低于60分

60分到79分

不低于80分

分流方向

淘汰出局

复赛待选

直接晋级

(1)通过茎叶图比较两位选手所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);

(2)举办方将会根据评分结果对选手进行三向分流,根据所得分数,估计两位选手中哪位选手直接晋级的概率更大,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F,过点的直线lE交于AB两点.l过点F时,直线l的斜率为,当l的斜率不存在时,.

1)求椭圆E的方程.

2)以AB为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:坐标系与参数方程

在以直角坐标原点为极点,的非负半轴为极轴的极坐标系下,曲线的方程是,将向上平移1个单位得到曲线

)求曲线的极坐标方程;

)若曲线的切线交曲线于不同两点,切点为.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4个不同的球,4个不同的盒子,把球全部放入盒内.

1恰有1个盒不放球,共有几种放法?

2恰有1个盒内有2个球,共有几种放法?

3恰有2个盒不放球,共有几种放法?

查看答案和解析>>

同步练习册答案