精英家教网 > 高中数学 > 题目详情

已知抛物线C: 的焦点为F,ABQ的三个顶点都在抛物线C上,点M为AB的中点,.(1)若M,求抛物线C方程;(2)若的常数,试求线段长的最大值.

(1),(2).

解析试题分析:(1)本小题中设,又,而转化为坐标关系,从而可求出Q点坐标(含P),又Q点在抛物线上,所以代入Q点坐标可求得P;(2)本小题中可设直线AB的方程为,联立消y,得到关于x的一元二次方程(其中可得m的取值范围),而,则根据韦达定理,可写出关于m的函数关系,从而求出其最大值.
试题解析:(1)由题意,设,因为M。所以,代人得p=2或p=-1.由题意M在抛物线内部,所以,故抛物线C: .
(2)设直线AB的方程为,点.由,于是,所以AB中点M的坐标为,由,得,所以,由,由,得,又因为=2=2=,记,易得=,所以=.
考点:抛物线的标准方程及焦点坐标公式,向量的坐标运算,直线与抛物线相交问题,设而不解思想,韦达定理,弦长公式,函数与方程思想,函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

若过椭圆=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是______

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆和点
(1)求椭圆的方程;
(2)设过点的直线与椭圆交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,其左焦点到点的距离为
(1) 求椭圆的标准方程;
(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点坐标分别是,并且经过点,求它的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知抛物线,在此抛物线上一点到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设椭圆的左右焦点为,上顶点为,点关于对称,且
(1)求椭圆的离心率;
(2)已知是过三点的圆上的点,若的面积为,求点到直线距离的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:)的左焦点为,离心率为.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.

查看答案和解析>>

同步练习册答案