精英家教网 > 高中数学 > 题目详情

【题目】若直线m被两平行线l1:x+y=0与l2:x+y+ =0所截得的线段的长为2 ,则m的倾斜角可以是
①15° ②45° ③60° ④105°⑤120° ⑥165°
其中正确答案的序号是 . (写出所有正确答案的序号)

【答案】④或⑥
【解析】解:由两平行线间的距离为 = ,直线m被平行线截得线段的长为2
可得直线m和两平行线的夹角为30°.
由于两条平行线的倾斜角为135°,故直线m的倾斜角为105°或165°,
所以答案是:④或⑥.
【考点精析】解答此题的关键在于理解直线的倾斜角的相关知识,掌握当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α=0°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx﹣2cos2x. (Ⅰ)求f( );
(Ⅱ)求f(x)的最大值和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= ,AB=1,M是PB的中点.

(1)证明:面PAD⊥面PCD;
(2)求AC与PB所成的角;
(3)求面AMC与面BMC所成二面角的大小余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 (x∈R),其中t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)当﹣1≤t≤1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两定点A25),B-21),M(在第一象限)和N是过原点的直线l上的两个动点,且|MN|=lAB,如果直线AMBN的交点Cy轴上,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其它费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其它费用为每小时800元,且该货轮的最大航行速度为50海里/小时.
(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3 (m+3)x2+(m+6)x,x∈R.(其中m为常数)
(1)当m=4时,求函数的极值点和极值;
(2)若函数y=f(x)在区间(0,+∞)上有两个极值点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是焦距为的椭圆的左、右顶点, 为椭圆上非顶点的点,直线的斜率分别为,且.

(1)求椭圆的方程;

(2)直线(与轴不重合)过点且与椭圆交于两点,直线交于点,试求点的轨迹是否是垂直轴的直线,若是,则求出点的轨迹方程,若不是,请说明理由.

查看答案和解析>>

同步练习册答案