精英家教网 > 高中数学 > 题目详情
4.在△ABC中,已知sin2A=sin2B+sin2C,且sinA=2sinBcosC,则△ABC的形状是(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

分析 由sin2A=sin2B+sin2C,可得△ABC为直角三角形.再由 sinA=2sinBcosC,可得sin(B-C)=0,B=C,由此可得△ABC为等腰三角形.

解答 解:在△ABC中,∵sin2A=sin2B+sin2C,
∴a2=b2+c2,故△ABC为直角三角形.
再由 sinA=2sinBcosC,
可得 sin(B+C)=2sinBcosC,
即 sinBcosC+cosBsinC=2sinBcosC,
∴sin(B-C)=0,
∴B=C,
故△ABC为等腰三角形.
综上,△ABC为等腰直角三角形.
故选:D.

点评 本题主要考查正弦定理、两角和的正弦公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)是R上的奇函数,且f(-1)=0,若不等式$\frac{{x}_{1}f({x}_{1})-{x}_{2}f({x}_{2})}{{x}_{1}-{x}_{2}}$<0对区间(-∞,0)内任意两个不相等的实数x1、x2恒成立,则不等式2xf(3x)<0的解集是(-$\frac{1}{3}$,0)∪(0,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p是函数f(x)=x2-bx+1的零点,试求$\frac{b-4}{p}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)满足f(x-1)=2x+1,若f(a)=3a,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.记集合$M=\left\{{\left.x\right|y=\sqrt{3-x}+\sqrt{x-1}}\right\}$,集合N={y|y=x2-2x+m}.
(1)若m=3,求M∪N;
(2)若M∩N=M,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知tanθ=$\frac{1}{3}$,那么tan($θ+\frac{π}{4}$)等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设等差数列{an}的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=a2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2$\sqrt{3}sin(ωx+\frac{π}{4})sin(\frac{π}{4}-ωx)+sin2ωx+a(ω>0)$的图象与直线y=m(m>0)相切,并且切点横坐标依次成公差为π的等差数列,且f(x)的最大值为1.
(1)x∈[0,π],求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,若函数y=g(x)-m在$[0,\frac{π}{2}]$上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)的定义域为(0,+∞),且f(x)为增函数,f(xy)=f(x)+f(y).
(1)求证:f($\frac{{x}^{2}}{y}$)=2f(x)-f(y);
(2)若f(2)=1,且f(a)>f(a-1)+2,求a的取值范围.

查看答案和解析>>

同步练习册答案