精英家教网 > 高中数学 > 题目详情
f(x)=x3+lg(x+
x2+1
)
,则对任意实数a,b,“a+b≥0”是“f(a)+f(b)≥0”的______条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”之一)
f(x)=x3+lg(x+
x2+1
)

∴f(-x)=-x3+lg(-x+
(-x)2+1
)=-(x3+lg(x+
x2+1
)
)=-f(x),
∴f(x)为奇函数,
∵f′(x)=3x2+
lge
x+
x2+1
(1+
x
x2+1
)
=3x2+lge(
1
x2+1
)>0,
∴f(x)为增函数,
∵a+b≥0,?a≥-b,
∴f(a)≥f(-b),
∴f(a)≥-f(b),
∴f(a)+f(b)≥0,
反之也成立,
∴“a+b≥0”是“f(a)+f(b)≥0”的充要条件,
故答案为充要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线l是曲线f(x)=x3-
3
x+2
上的一条切线,则切线l斜率最小时对应的倾斜角为
120°
120°

查看答案和解析>>

科目:高中数学 来源: 题型:

P1是椭圆+y2=1(a>0且a≠1)上不与顶点重合的任一点,P1P2是垂直于x轴的弦,A1(-a,0),A2(a,0)是椭圆的两个顶点,直线A1P1与直线A2P2的交点为P.

(1)求点P的轨迹曲线C的方程;

(2)设曲线C与直线l:x+y=1相交于两个不同的点A、B,求曲线C的离心率e的取值范围;

(3)设曲线C与直线l:x+y=1相交于两个不同的点A、B,O为坐标原点,且=-3,求a的值.

(文)(本小题满分12分)设函数f(x)=x3+2ax2-3a2x+a(0<a<1).

(1)求函数f(x)的单调区间;

(2)若当x∈[a,2]时,恒有f(x)≤0,试确定实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设直线l是曲线f(x)=x3-
3
x+2
上的一条切线,则切线l斜率最小时对应的倾斜角为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

P1是椭圆+y2=1(a>0且a≠1)上不与顶点重合的任一点,P1P2是垂直于x轴的弦,A1(-a,0)、A2(a,0)是椭圆的两个顶点,直线A1P1与直线A2P2的交点为P.

(1)求点P的轨迹曲线C的方程;

(2)设曲线C与直线l:x+y=1相交于两个不同的点A、B,求曲线C的离心率e的取值范围;

(3)设曲线C与直线l:x+y=1相交于两个不同的点A、B,O为坐标原点,且=-3,求a的值.

(文)设函数f(x)=x3+2ax2-3a2x+a(0<a<1).

(1)求函数f(x)的单调区间;

(2)若当x∈[a,2]时,恒有f(x)≤0,试确定实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设直线l:y=k(x+1)与椭圆x2+3y2=a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.

(1)证明a2;

(2)若AC=2CB,求△OAB的面积取得最大值时的椭圆方程.

(文)设a∈R,函数f(x)=x3-x2-x+a.

(1)求f(x)的单调区间;

(2)当x∈[0,2]时,若|f(x)|≤2恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案