精英家教网 > 高中数学 > 题目详情
把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为
 
考点:直线与平面所成的角
专题:空间角
分析:当平面BAC⊥平面DAC时,三棱锥体积最大,由此能求出结果.
解答: 解:如图,当平面BAC⊥平面DAC时,三棱锥体积最大
取AC的中点E,则BE⊥平面DAC,
故直线BD和平面ABC所成的角为∠DBE
cos∠DBE=
BE
BD
=
2
2

∴∠DBE=
π
4

故答案为:
π
4
点评:本题考查直线与平面所成角的最大值的求法,是中档题,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的各条棱长都相等,且CC1⊥底面ABC,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是(  )
A、
π
2
B、
π
4
C、
π
6
D、
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|2≤x≤4},定义在A上的函数f(x)=logax(a>1)的最大值比最小值大1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为a的正方体ABCD-A1B1C1D1中,EF是棱AB上的一条线段,且EF=b<a,若Q是A1D1上的定点,P在C1D1上滑动,则四面体PQEF的体积(  )
A、是变量且有最大值
B、是变量且有最小值
C、是变量无最大最小值
D、是常量

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x(2-k﹚﹙1+k﹚﹙k∈Z﹚满足f﹙2﹚<f﹙3﹚.
(1)求整数k的值,并写出相应的函数f(x)的解析式;
(2)设g(x)=f(x)-2ax+1,x∈[-2,1],求g(x)的最小值h(a);
(3)求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x+2|>3x+
14
5
的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正四面体ABCD的外接球的体积为4
3
π,则正四面体ABCD的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ax+3
x-1

(1)求y=f(x)反函数y=f-1(x)值域;
(2)若M(2,7)为y=f-1(x)图象上一点,求y=f-1(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={0,1,2},B={-2,1,2,3},则A∪B=
 

查看答案和解析>>

同步练习册答案