【题目】如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.
(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;
(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B﹣DE﹣F的余弦值.
【答案】
(1)解:DE∥平面ABC.
∵VC平面VBC,DE⊥平面VBC,
∴DE⊥VC,
∵VC⊥平面ABC,∴VC⊥AC,
∵DE⊥VC,VC⊥AC,∴DE∥AC,
∵DE平面ABC,AC平面ABC,
∴DE∥平面ABC;
(2)解:∵DE⊥平面VBC,∴DE⊥BE,DE⊥VB,
∵D,F分别为VA,AB的中点,
∴DF∥VB,∴DE⊥DF,
∴BE,DF所成角的大小=二面角B﹣DE﹣F的大小.
∵VC=2BC,∴VE=BC,VB= BC,∴BE= BC,
∴cos∠VBE= = ,
∴二面角B﹣DE﹣F的余弦值为 .
【解析】(1)证明DE∥AC,即可判断直线DE与平面ABC的位置关系;(2)BE,DF所成角的大小=二面角B﹣DE﹣F的大小,利用余弦定理,即可求解.
【考点精析】认真审题,首先需要了解空间中直线与平面之间的位置关系(直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点).
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠BAD= ,AB=2,AD=1,若M、N分别是边AD、CD上的点,且满足 =λ,其中λ∈[0,1],则 的取值范围是( )
A.[﹣3,﹣1]
B.[﹣3,1]
C.[﹣1,1]
D.[1,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从後表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高几何?译文如下:要测量海岛上一座山峰A的高度AH,立两根高三丈的标杆BC和DE,前后两杆相距BD=1000步,使后标杆杆脚D与前标杆杆脚B与山峰脚H在同一直线上,从前标杆杆脚B退行123步到F,人眼著地观测到岛峰,A、C、F三点共线,从后标杆杆脚D退行127步到G,人眼著地观测到岛峰,A、E、G三点也共线,则山峰的高度AH=( ) 步(古制:1步=6尺,1里=180丈=1800尺=300步)
A.1250
B.1255
C.1230
D.1200
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,直线l的参数方程为 (t为参数),在以O为极点x轴的非负半轴为极轴建立的极坐标系中,曲线C的极坐标方程为ρ=2.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若点Q是曲线C上的动点,求点Q到直线l的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底, 是的中点。
(1)证明:直线平面;
(2)点在棱上,且直线与底面所成角为,求二面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,小明想将短轴长为2,长轴长为4的一个半椭圆形纸片剪成等腰梯形ABDE,且梯形ABDE内接于半椭圆,DE∥AB,AB为短轴,OC为长半轴
(1)求梯形ABDE上底边DE与高OH长的关系式;
(2)若半椭圆上到H的距离最小的点恰好为C点,求底边DE的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC﹣A1BlC1中,平面α与棱AB,AC,A1C1 , A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设为不同的两点,直线的方程为,设,其中均为实数.下列四个说法中:
①存在实数,使点在直线上;
②若,则过两点的直线与直线重合;
③若,则直线经过线段的中点;
④若,则点在直线的同侧,且直线与线段的延长线相交.
所有结论正确的说法的序号是______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com