精英家教网 > 高中数学 > 题目详情
20.已知:函数f(x)=lg(1-x)+lg(p+x),其中p>-1
(1)求f(x)的定义域;
(2)若p=1,当x∈(-a,a]其中a∈(0,1),a是常数时,函数f(x)是否存在最小值,若存在,求出f(x)的最小值;若不存在,请说明理由.

分析 (1)运用对数函数的定义域,解不等式即可得到所求定义域;
(2)运用对数的运算性质和对数函数的单调性和二次函数的最值,即可得到所求最值.

解答 解:(1)由题意可得$\left\{\begin{array}{l}{1-x>0}\\{p+x>0}\end{array}\right.$,
即有$\left\{\begin{array}{l}{x<1}\\{x>-p}\end{array}\right.$,由p>-1,可得-p<1,
即有-p<x<1,则函数的定义域为(-p,1);
(2)f(x)=lg(1-x)+lg(1+x)=lg(1-x2),(-a<x≤a),
令t=1-x2,(-a<x≤a),y=lgt,为递增函数.
由t的范围是[1-a2,1],
当x=a时,y=lgt取得最小值lg(1-a2),
故存在x=a,函数f(x)取得最小值,且为lg(1-a2).

点评 本题考查函数的定义域和最值的求法,注意运用函数的单调性,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知a,b∈R+,直线ax+by=5平分圆x2+y2-2x-4y+1=0的周长.则a2+b2的最小值为(  )
A.5B.$\sqrt{5}$C.25D.5$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点A(-2,4)在抛物线C:y2=2px的准线上,抛物线的焦点为F,则直线AF的斜率为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数$f(x)=\frac{3x}{2x+3}$,数列{an}满足a1=1,an+1=f(an),n∈N*
(I)求证:数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列;
(II)令bn=an-1•an(n≥2),b1=3,sn=b1+b2+…+bn,若${S_n}<\frac{m-2003}{2}$对一切n∈N*成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,在区间(0,+∞)上为增函数的是(  )
A.f(x)=-$\sqrt{x+1}$B.f(x)=${(\frac{1}{2})}^{x}$C.f(x)=lnx+2D.f(x)=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.指数函数y=ax在[1,2]上的最大值与最小值的和为6,则a=(  )
A.2B.3C.2或$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Sn=n2+2n(n∈N+),数列{bn}的前n项和Tn=2n-1(n∈N+).
(1)求数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和;
(2)求数列{an•bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆心在第一象限的圆过点P(-4,3),圆心在直线2x-y+1=0上,且半径为5,则这个圆的方程为(x-1)2+(y-3)2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列结论中正确的是(  )
A.当x>0且x≠1时,lgx+$\frac{1}{lgx}$≥2B.当x>0且x≠1时,$\sqrt{x}$+$\frac{1}{\sqrt{x}}$≥2
C.当x≥3时,x+$\frac{1}{x}$的最小值是$\frac{10}{3}$D.当0<x≤1时,x-$\frac{1}{x}$无最大值

查看答案和解析>>

同步练习册答案