精英家教网 > 高中数学 > 题目详情

(20分) 在ABC中,角A,B,C的对边分别为a,b,c,若.

(1)求证:A=B;

(2)求边长c的值;w.w.w.k.s.5.u.c.o.m    

(3)若,求ABC的面积。

解析:(1)由,得bccosA=accosB,sinBcosA=sinAcosB,sin(A-B)=0,则A=B.----- -----(5分)

(2) ,得bccosA=1,又,则b2+c2-a2=2,c2=2,所以。------------10分)w.w.w.k.s.5.u.c.o.m    

(3) ,得2+b2+2=6, ,s=.-------------------(20分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:
①在△ABC中,∠A>∠B是sinA>sinB的充要条件;
②某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,若用分层抽样的方法抽出一个容量为30的样本,则一般职员应抽出20人;
③如果函数f(x)对任意的x∈R都满足f(x)=-f(2+x),则函数f(x)是周期函数;
④已知点(
π
4
,0)和直线x=
π
2
分别是函数y=sin(ωx+φ)(ω>0)图象的一个对称中心和一条对称轴,则ω的最小值为2;其中正确结论的序号是
 
.(填上所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A、B、C所对的边,且3a
BC
+4b
CA
+5c
AB
=0
,则a:b:c=
20:15:12
20:15:12

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在下面A,B,C,D四个小题中只能选做两题,每小题10分,共20分.
A.选修4-1:几何证明选讲
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F,判断BE是否平分∠ABC,并说明理由.
B.选修4-2:短阵与变换
已知矩阵M=
1
2
0
02
,矩阵M对应的变换把曲线y=sinx变为曲线C,求C的方程.
C.选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是ρ=4sin(θ+
π
4
)
,求曲线C的普通方程.
D.选修4-5:不等式选讲
已知x,y,z∈R,且x+y+z=3,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=7,∠ABP=∠ABC,C是圆上一点使得BC=5,求线段AB的长.
B.(选修4-2:矩阵与变换)
求曲线C:xy=1在矩阵
2
2
-
2
2
2
2
2
2
对应的变换作用下得到的曲线C′的方程.
C.(选修4-4:坐标系与参数方程)
已知曲线C1
x=3cosθ
y=2sinθ
(θ为参数)和曲线C2:ρsin(θ-
π
4
)=
2

(1)将两曲线方程分别化成普通方程;
(2)求两曲线的交点坐标.
D.(选修4-5:不等式选讲)
已知|x-a|<
c
4
,|y-b|<
c
6
,求证:|2x-3y-2a+3b|<c.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中a、b、c分别是角A、B、C的对边,若△ABC的周长等于20,面积是10
3
,A=60°,求a的值.

查看答案和解析>>

同步练习册答案