【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,,.
(Ⅰ)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(Ⅱ)为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内?
【答案】(Ⅰ)(Ⅱ)
【解析】
试题分析:(Ⅰ)设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,由余弦定理可得;(Ⅱ)设乙步行的速度为 v m/min,从而求出v的取值范围
试题解析:(Ⅰ)∵,∴∴,
∴
根据得,所以乙在缆车上的时间为(min).
设乙出发()分钟后,甲、乙距离为,则
∴时,即乙出发分钟后,乙在缆车上与甲的距离最短.
(Ⅱ)由正弦定理得(m).
乙从出发时,甲已经走了50(2+8+1)=550(m),还需走710m才能到达.
设乙步行速度为,则.解得.
∴为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在范围内.
科目:高中数学 来源: 题型:
【题目】在12件同类型的零件中有2件次品,抽取3次进行检验,每次抽取1件,并且取出后不再放回,若以ξ和η分别表示取到的次品数和正品数.
(1)求ξ的分布列、均值和方差;
(2)求η的分布列、均值和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点且斜率为的直线与圆:交于点两点.
(1)求的取值范围;
(2)请问是否存在实数k使得(其中为坐标原点),如果存在请求出k的值,并求;如果不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形中, , , ,四边形为矩形,平面平面, .
(1)求证: 平面;
(2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是,点在直径上,且.
(1)若米,求的长;
(2)设, 求该空地产生最大经济价值时种植甲种水果的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心为坐标原点,其离心率为,椭圆的一个焦点和抛物线的焦点重合.
(1)求椭圆的方程
(2)过点的动直线交椭圆于、两点,试问:在平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过点,若存在,说出点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲,乙两种产品均需用两种原料,已知生产1吨每种产品需用原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.
甲 | 乙 | 原料限额 | |
A(吨) | 3 | 2 | 12 |
B(吨) | 1 | 2 | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com