精英家教网 > 高中数学 > 题目详情
已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.
(1)(2)
(1)直线AM的斜率为1时,直线AM为y=x+2,代入椭圆方程并化简得5x2+16x+12=0,解之得x1=-2,x2=-,∴点M的坐标为.
(2)设直线AM的斜率为k,则AM为y=k(x+2),
化简得(1+4k2)x2+16k2x+16k2-4=0.
∵此方程有一根为-2,∴xM,同理可得xN
由(1)知若存在定点,则此点必为P.
∵kMP
同理可计算得kPN.∴直线MN过x轴上的一定点P
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-
(1).求动点P的轨迹C方程;
(2).设直线L:y=kx+m与曲线C交于不同两点,M,N,当OM⊥ON时,求O点到直线L的距离(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点
(1)求椭圆的方程;
(2)直线与椭圆相交于两点, 为原点,在上分别存在异于点的点,使得在以为直径的圆外,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为, 焦距为2,过作垂直于椭圆长轴的弦长为3
(1)求椭圆的方程;
(2)若过点的动直线交椭圆于A、B两点,判断是否存在直线使得为钝角,若存在,求出直线的斜率的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:














据此,可推断椭圆的方程为            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C上动点P(x,y)到定点F1(,0)与定直线l1∶x=的距离之比为常数.
(1)求曲线C的轨迹方程;
(2)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求·的最小值,并求此时圆T的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足≤1,则PF1+PF2的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.

(1)求点B的轨迹方程;
(2)当点D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆C上的另一个动点,且满足FG⊥FE,记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上的点,分别是椭圆的左、右焦点,若,则的面积为(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案