【题目】设,若时,恒有,则 .
【答案】-1
【解析】
试题分析:验证发现,
当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0,
当x=0时,可得0≤b≤1,结合a+b=0可得-1≤a≤0,
令f(x)=x4-x3+ax+b,即f(1)=a+b=0,
又f′(x)=4x3-3x2+a,f′′(x)=12x2-6x,
令f′′(x)>0,可得x>,则f′(x)=4x3-3x2+a在[0,]上减,在[,+∞)上增,
又-1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0,
又x≥0时恒有,结合f(1)=a+b=0知,1必为函数f(x)=x4-x3+ax+b的极小值点,也是最小值点.
故有f′(1)=1+a=0,由此得a=-1,b=1,
故ab=-1.
科目:高中数学 来源: 题型:
【题目】从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到频率分布直方图如下:
(1)若用分层抽样的方法从分数在和的学生中共抽取人,该人中成绩在的有几人?
(2)在(1)中抽取的人中,随机抽取人,求分数在和各人的概率.
(3)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域,部分对应值如表, 的导函数的图象如图所示,下列关于函数的命题;
①函数的值域为;
②函数在上是减函数;
③如果当时, 最大值是,那么的最大值为;
④当时,函数最多有4个零点.
其中正确命题的序号是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}共有2k项(),数列{an}的前n项和为Sn,满足:a1 = 2,an1 = (p 1) Sn 2(n = 1,2,…, 2k1),其中常数p > 1.
(1)求证:数列{an}是等比数列;
(2)若,数列{bn }满足(n = 1,2,…, 2k),求数列
{bn }的通项公式;
(3)对于(2)中数列{bn },求和Tn = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是
A. 289 B. 1 024 C. 1 225 D. 1 378
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,.
(Ⅰ)当时,求曲线在处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,椭圆上的点满足,且的面积为.
(1)求椭圆的方程;
(2)设椭圆的左、右顶点分别为、,过点的动直线与椭圆相交于、两点,直线与直线的交点为,证明:点总在直线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com