精英家教网 > 高中数学 > 题目详情
已知f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(1)=2,则f(2011)等于(  )
分析:根据条件求出f(2)的值,然后得到f(x+4)=f(x)即函数f(x)是周期为4的函数,又f(1)=2,从而求出f(2011).
解答:解:∵对任意的x∈R都有f(x+4)=f(x)+f(2)成立
∴f(-2+4)=f(-2)+f(2),即f(-2)=0,
∵f(x)是R上的奇函数,
∴f(2)=-f(-2)=0,
∴f(x+4)=f(x),即函数f(x)是周期为4的函数,又f(1)=2,
∴f(2011)=f(4×503-1)=f(-1)=-f(1)=-2.
故选D.
点评:本题主要考查了函数奇偶性的性质,以及抽象函数及其应用,解题的关键是求出f(x+4)=f(x),属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知f(x)是R上的偶函数,f(2)=-1,若f(x)的图象向右平移1个单位长度,得到一个奇函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零点,比较f(a),f(-2),f(1.5)的大小,用小于符号连接为
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=
x

(1)求当x<0时,f(x)的表达式
(2)判断f(x)在区间(0,+∞)的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若g(-1)=2,则f(2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①命题“已知f(x)是R上的减函数,若a+b≥0,则f(a)+f(b)≤f(-a)+f(-b)”的逆否命题为真命题;
②若p或q为真命题,则p、q均为真命题;
③若命题p:?x∈R,x2-x+1<0,则?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要条件.
其中正确的是(  )

查看答案和解析>>

同步练习册答案