精英家教网 > 高中数学 > 题目详情
4.利用二分法求$\root{3}{3}$的近似值(精确度0.1)

分析 令f(x)=x3-3,根据用二分法求方程的近似解的方法和步骤,求得方程x3--3=0的近似解(精确度0.1),即为所求.

解答 解:由题意,求f(x)=x3-3的零点即可.
因为f(1)=-2<0,f(2)=5>0,所以方程x3-3=0在区间[1,2]上有实数解,如此下去,
f(1.5)=0.375>0,f(1.25)=-1.05<0,f(1.375)=-0.41<0,f(1.4375)=-0.03<0
至此,我们得到,区间长度为0.0625,它小于0.1.因此,我们可以选取这一区间内的任意一个数作为方程x2-3=0的一个近似解.
例如,可以选取1.4作为方程x2-3=0的一个近似解.
即$\root{3}{3}$的近似值为1.4.

点评 本题主要考查用二分法求方程的近似解的方法和步骤,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知a,b∈R+,函数f(x)=alog2x+b的图象经过点(4,1),则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.6-2$\sqrt{2}$B.6C.4+2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A={1,2,x},B={1,x2},且A∩B=B,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={2,3},B={2,3,4},C={3,4,5}则(A∩B)∪C=(  )
A.{2,3,4}B.{2,3,5}C.{3,4,5}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,ABCD是矩形,其中AB=2AD=4,E为DC上一点,使得D点射影落在AE上.

(1)若E为CD中点,求证:AD⊥平面BDE;
(2)设∠DAE=θ,当DB最短时,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(2x+3)的定义域为(0,1),求y=f(2x-1)的定义域为(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PD⊥平面ABCD;四边形ABCD是菱形,经过AC作与PD平行的平面交PB与点E,ABCD的两对角线交点为F.求证:AC⊥DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在直角坐标系xOy中,直线1的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=4+tsinα}\end{array}\right.$(t为参数,α∈R),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ-4sinθ=0.
(1)当α=$\frac{3π}{4}$时,求直线l与曲线C的交点的极坐标;
(2)若直线l与曲线C交于A、B两点,且|AB|=2$\sqrt{3}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同.已知曲线C的极坐标方程为ρ=2(cosθ+sinθ),斜率为$\frac{\sqrt{3}}{3}$的直线l交y轴与点E(0,1).
(Ⅰ)求曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)直线l与曲线C交于A、B两点,求|EA|•|EB|的值.

查看答案和解析>>

同步练习册答案