精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为矩形,
(Ⅰ)当a=1时,求证:BD⊥PC;
(Ⅱ)若BC边上有且只有一个点Q,使得PQ⊥QD,求此时二面角A-PD-Q的余弦值.
【答案】分析:(Ⅰ)由PA垂直矩形底面ABCD,利用直线与平面垂直的性质得到PA垂直BD,由a=1,知道底面ABCD为正方形,从而得到BD垂直于△PAC,由此能够证明BD⊥PC.
(Ⅱ)由AB,AD,AP两两垂直,分别以它们所在的直线为x轴,y轴,z轴,建立坐标系.借助空间向量先求出a=2,m=1.然后求出设面PQD的法向量,取面PAD的法向量,由此利用向量法能求出二面角A-PD-Q的余弦值.
解答:证明:(Ⅰ)∵PA垂直矩形底面ABCD,
∴PA垂直BD,

a=1,
∴AB=PA=BC,
∴底面ABCD为正方形,
∴BD垂直于AC,
∴BD垂直于△PAC,
∴BD⊥PC.
解:(Ⅱ)∵AB,AD,AP两两垂直,分别以它们所在的直线为x轴,y轴,z轴,
建立坐标系

令AB=1,则BC=a,
B(1,0,0),D(0,a,0),C(1,a,0),P(0,0,1),
设BQ=m,Q(1,m,0),(0≤m≤a),
要使PQ⊥QD,只要
即m2-am+1=0,
由△=a2-4=0,得a=2,此时m=1.
∴BC边上有且只有一个点Q,使得PQ⊥QD时,
Q为BC的中点,且a=2,
设面PQD的法向量
,即

取面PAD的法向量
则<>的大小与三面角A-PD-Q的大小相等,
∵cos<>==
∴二面角A-PD-Q的余弦值为
点评:本题以四棱锥为载体,考查线面平行,考查线面角,考查面面角,综合性强,难度大,容易出错.解决问题的关键是建立空间直角坐标系,利用向量法进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成角的大小;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于点N,M是PD中点.
(1)用空间向量证明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直线CD与平面ACM所成的角的正弦值.
(3)求点N到平面ACM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,O为底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中点
(1)求证:直线MO∥平面PAB;
(2)求证:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求证:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PD⊥平面ABCD,PD=AB=1,EF分别是PB、AD的中点,
(I)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

同步练习册答案