精英家教网 > 高中数学 > 题目详情
9.等差数列{an}和{bn},其前n项和分别为Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,则$\frac{{{a_{10}}}}{{{b_{10}}}}$等于(  )
A.$\frac{72}{13}$B.$\frac{135}{22}$C.$\frac{79}{14}$D.$\frac{142}{23}$

分析 利用$\frac{{{a_{10}}}}{{{b_{10}}}}$=$\frac{{S}_{19}}{{T}_{19}}$,即可得出.

解答 解:$\frac{{{a_{10}}}}{{{b_{10}}}}$=$\frac{\frac{19({a}_{1}+{a}_{19})}{2}}{\frac{19({b}_{1}+{b}_{19})}{2}}$=$\frac{{S}_{19}}{{T}_{19}}$=$\frac{7×19+2}{19+3}$=$\frac{135}{22}$.
故选;B.

点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,sin2B=sinAsinC.
(1)若$\frac{1}{tanA}$,$\frac{\sqrt{3}}{3}$,$\frac{1}{tanC}$成等差数列,求cosB的值;
(2)若$\frac{BC}{sinA}$=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{1}{3}{x}^{3}+\frac{1}{2}a{x}^{2}+2bx+c(a,b,c∈R)$,且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则z=(a+3)2+b2的取值范围为($\frac{1}{2}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的前n和为Sn,a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1,则a5+S4=(  )
A.39B.45C.50D.55

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A、B、C的对边分别为a、b、c,$\frac{π}{3}$-A=B,a=3,b=5,则c=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=4cos(ωx+φ)对任意的x∈R,都有$f(-x)=f(\frac{π}{3}+x)$,若函数g(x)=sin(ωx+φ)-2,则$g(\frac{π}{6})$的值是(  )
A.1B.-5或3C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x2+2(a-1)x+2在区间(-∞,1]内递减,那么实数a的取值范围为(  )
A.a≤2B.a≤0C.a≥2D.a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从某班级随机询问了该班男生A五个科目的成绩分别是86,94,88,92,90,男生B五个科目的成绩分别是85,91,89,93,92,去请问哪个同学的学习情况更好?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设向量$\overrightarrow{OM}$、$\overrightarrow{ON}$是夹角为60°的两个单位向量,向量$\overrightarrow{OP}$=x•$\overrightarrow{OM}$+y•$\overrightarrow{ON}$,(x、y为实数).若△PMN是以点M为直角顶点的直角三角形,则x-y的值为1.

查看答案和解析>>

同步练习册答案