A. | $\frac{1}{e}$-2 | B. | 1-2e | C. | 1-e | D. | 2-$\frac{1}{e}$ |
分析 令y=ln(x+1)-(a+2)x-b+2,求出导数,分类讨论,进而得到b-3≥-ln(a+2)+a,可得$\frac{b-3}{a+2}$≥$\frac{-ln(a+2)+a}{a+2}$,再换元,通过导数求出单调区间和极值、最值,进而得到$\frac{b-3}{a+2}$的最小值.
解答 解:令y=ln(x+1)-(a+2)x-b+2,则y′=$\frac{1}{x+1}$-(a+2),
a+2<0,y′>0,函数递增,无最值.
当a+2>0时,-1<x<$\frac{-a-1}{a+2}$时,y′>0,函数递增;当x>$\frac{-a-1}{a+2}$时,y′<0,函数递减.
则x=$\frac{-a-1}{a+2}$处取得极大值,也为最大值,且为-ln(a+2)+a-b+3,
∴-ln(a+2)+a-b+3≤0,
∴b-3≥-ln(a+2)+a,
∴$\frac{b-3}{a+2}$≥$\frac{-ln(a+2)+a}{a+2}$,
令t=a+2(t>0),则y=$\frac{-lnt+t-2}{t}$,
∴y′=$\frac{1+lnt}{{t}^{2}}$,
∴(0,$\frac{1}{e}$)上,y′<0,($\frac{1}{e}$,+∞)上,y′>0,
∴t=$\frac{1}{e}$,ymin=1-e.
∴$\frac{b-3}{a+2}$的最小值为1-e.
故选:C.
点评 本题考查不等式的恒成立问题注意转化为求函数的最值问题,运用导数判断单调性,求极值和最值是解题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 21 | B. | 20 | C. | 19 | D. | 17 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com