精英家教网 > 高中数学 > 题目详情
文(12分)已知四棱锥P-ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(1)求点P到平面ABCD的距离;(2)求PD与AB所成角的大小;(3)求二面角A—PB—C的大小.
(1)(2)(3)
(1)作PO⊥平面ABCD于O,则PO⊥AD,又∵PB⊥AD,
∴AD⊥平面POB,连OB交AD于E,则PE⊥AD,BE⊥AD,
得∠PEB为二面角P-AD-B的平面角.∴∠PEB=120°,
在边长为2正△PAD中,易得AE=,∴为所求;
(2)易证Rt△PAE≌Rt△BAE(直角边、斜边).∴BE=PE=,∴PB=3.又在Rt△PBC中.∵AB∥DC,∴PD与AB所成角即为PD与DC所成角.在△PDC中,由余弦定理得.∴PD与AB所成角大小为.
(3)取PB中点G及PC中点F,则GF∥BC,而BC⊥PB,∴GF⊥PB;又∵AP=AB,∴AG⊥PB,于是∠AGF为所求平面角.由(2)所证知PE=BE,∴∠PEG=60°,,∴Rt△GAE中, ,∴.
解法2:建立如图坐标系,则,先证明,从而知B,
G,A,C.然后由,如所成的角即为所求平面角.∵,∴平面角.
注:(2)题中可由.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

异面直线a,b所成的角为,空间中有一定点O,过点O有3条直线与a,b所成角都是60,则的取值可能是(  )
A.30B.50C.60D.90

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二面角的大小为为异面直线,且,则所成的角为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,AA1=a,E,F分别是BC,DC的中点.求异面直线AD1与EF所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线m与平面α所成角为
π
3
,直线n?α,则直线m,n所成角的取值范围是(  )
A.(0,
π
2
)
B.[
π
6
π
2
]
C.[
π
3
π
2
]
D.[
π
6
π
3
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平面AC⊥平面AE,且四边形ABCD与四边形ABEF都是正方形,则异面直线AC与BF所成角的大小是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(改编题)
在平面几何中:ΔABC的∠C的内角平分线CE分AB所成线段的比为.把这个结论类比到空间:在三棱锥A—BCD中(如下图),DEC平分二面角A—CD—B且与AB相交于E,则得到类比的结论是_________.
                         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面的一条斜线和它在平面内的射影的夹角是,且平面内的直线和斜线在平面内的射影的夹角是,则直线所成的角是        (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案