精英家教网 > 高中数学 > 题目详情
(2013•德州一模)已知函数y=f(x)的图象关于y轴对称,且当x∈(-∞,0)时有f(x)+xf'(x)<0成立a=(20.2)•f(20.2),b=(logπ3)•f(1ogπ3),c=(1og39)•f(1ong39),则a,b,c的大小关系是(  )
分析:构造函数g(x)=xf(x),则g(x)为减函数,利用指数函数与对数函数的性质可知1og39=2>20.2>1>logπ3>0,利用g(x)=xf(x)的单调性即可求得答案.
解答:解:令g(x)=xf(x),
∵y=f(x)的图象关于y轴对称,故y=f(x)为偶函数,
∴g(-x)=-xf(-x)=-xf(x)=-g(x),即g(x)=xf(x)为奇函数,
又g′(x)=f(x)+xf′(x)<0,
∴g(x)为R上的减函数;
∵1og39=2>20.2>1>logπ3>0,a=(20.2)•f(20.2),b=(logπ3)•f(logπ3),c=(1og39)•f(1ong39),
∴b>a>c.
故选A.
点评:本题考查利用导数研究函数的单调性,考查数函数与对数函数的性质及g(x)=xf(x)的单调性,考查分析与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•德州一模)命题“?x∈R,x2-2x=0”的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)在△ABC中,角A,B,C的对边分别为a,b,c,已知角A=
π
3
,sinB=3sinC.
(1)求tanC的值;
(2)若a=
7
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)若正项数列{an}满足1gan+1=1+1gan,且a2001+a2002+a2003+…a2010=2013,则a2011+a2012+a2013+…a2020的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)直线y=-
3
3
x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)设集合A={x|x2-5x-6<0},B={x|5≤x≤7},则A∩B=(  )

查看答案和解析>>

同步练习册答案