精英家教网 > 高中数学 > 题目详情

【题目】已知yf(x)是定义在R上的偶函数,当x0时,f(x)=.

(1)求当x<0时,f(x)的解析式;

(2)作出函数f(x)的图象,并指出其单调区间.

【答案】(1) x<0时,f(x) (2) 递减区间是(-∞,0],递增区间是[0,+∞).

【解析】

试题利用函数的奇偶性求函数的解析式是函数的奇偶性的应用之一,给出函数在x>0的解析式,利用当x<0时,-x>0,借助f(x)=f(-x)就可以求出x<0时的解析式;作函数图象最好先观察一下函数的解析式的形式特点,了解一下函数的简单性质,利用图象变换作图象又快又准,左移2个单位得出的图象,取的部分,y轴左边的图象与y轴右边的图象关于y轴对称.根据图象写出单调区间.

试题解析:

(1)当x<0时,-x>0,

f(-x)=

f(x)是定义在R上的偶函数,

f(-x)=f(x),

∴当x<0时, .

(2)由(1)知,

作出f(x)的图象如图所示:

由图得函数f(x)的递减区间是(-∞,0],递增区间是[0,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=2an﹣2n+1 , 若不等式2n2﹣n﹣3<(5﹣λ)ann∈N*恒成立,则整数λ的最大值为(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中表示同一个函数的是()

A.fx)=x1gx)= 1

B.fx)=x2gx)=( 4

C.fx)=gx)=|x|

D.fx)=gx)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,D、E分别是△ABC的边BC的三等分点,设 =m, =n,∠BAC=

(1)用 分别表示
(2)若 =15,| |=3 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足fx)=f(2-x),且f(1)=6,f(3)=2.

(1)求fx)的解析式

(2)是否存在实数m,使得在[-1,3]上fx)的图象恒在直线y=2mx+1的上方?若存在,求m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;

A

B

合计

认可

不认可

合计

(Ⅲ)若从此样本中的A城市和B城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自B城市的概率是多少?
附:参考数据:
(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在体积为12π的圆柱中,AB,CD分别是上、下底面两条不平行的直径,则三棱锥A﹣BCD的体积最大值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.

1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;

(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案