精英家教网 > 高中数学 > 题目详情
5.已知底面为正方形的四棱锥P-ABCD,如图(1)所示,PC⊥面ABCD,其中图(2)为该四棱锥的正(主)视图和侧(左)视图,它们是腰长为4cm的全等的等腰直角三角形.
(1)根据图(2)所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;
(2)求四棱锥P-ABCD的侧面积.

分析 (1)由直观图与四棱锥的主视图和左视图知,几何体的俯视图为(内含对角线)边长为6cm的正方形,由此可得其俯视图的面积;
(2)分半计算各侧面的面积,即可求四棱锥P-ABCD的侧面积.

解答 解:(1)该四棱锥的俯视图为内含一条对角线,边长为4 cm的正方形,俯视图如图所示,其面积为16 cm2….(6分)
(2)侧面积为2×$\frac{1}{2}×4×4$+2×$\frac{1}{2}×4×4\sqrt{2}$=16+16$\sqrt{2}$…(12分)

点评 本题考查了几何体的三视图及由三视图求几何量,解题的关键是由三视图判断几何体的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.点(-1,3)到直线y=-1的距离是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.1101011(2)=107(10)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l的参数方程$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$(t为参数),若以原点O为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).则直线l和圆C的位置关系为相交(填相交、相切、相离).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中,方程x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{{x}^{′}=2x}\\{{y}^{′}=3y}\end{array}\right.$后,得到的方程为(  )
A.$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{3}$=1B.2x2+3y2=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1D.4x2+9y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tan(α+β)=2,tan(α-β)=3,则$\frac{sin2α}{cos2β}$的值为$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:AB2+AC2=BC2.若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的三个侧面积S1,S2,S3与底面积S之间满足的关系为$S_1^2+S_2^2+S_3^2={S^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率e=$\frac{\sqrt{2}}{2}$,且过点$({1,\frac{{\sqrt{2}}}{2}})$,
(1)求椭圆的标准方程;
(2)直线l:y=k(x+1)与该椭圆交于M、N两点,且|$\overrightarrow{{F}_{2}M}$+$\overrightarrow{{F}_{2}N}$|=$\frac{2\sqrt{26}}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,某人拨通了电话,准备手机充值须如下操作(  )
A.1511B.1515C.1521D.1523

查看答案和解析>>

同步练习册答案